\name{exhaustivePlot} \Rdversion{1.0} \alias{exhaustivePlot} \title{Plot of the LML function by exhaustive search.} \description{ Exhaustively searches the hyperparameter space by a grid, whose resolution is passed as an argument, and plots the LML function for every point in the space. } \usage{ exhaustivePlot(y, x, xstar, options, maxwidth, res, nlevels) } \arguments{ \item{y}{the target (output) data.} \item{x}{the input data matrix.} \item{xstar}{the points to predict function values.} \item{options}{options structure as defined by gpOptions.m.} \item{maxwidth}{ maximum lengthscale to search for.} \item{res}{The search resolution. Number of points to plot for in the search range.} \item{nlevels}{Number of contour levels.} } \value{ \item{area}{Area under the ROC curve of method-A.} } \seealso{ \code{ \link{rocStats} } } \examples{ noiseLevel <- 0.2 noiseVar <- noiseLevel^2 options <- gpOptions() options$kern$comp <- list('rbf','white') ## Create data set l <- 9; x <- matrix(seq(0,240,by=20), ncol=1) trueKern <- kernCreate(x, 'rbf') trueKern$inverseWidth <- 1/(20^2) ## Characteristic inverse-width. K <- kernCompute(trueKern, x) + diag(dim(x)[1])*noiseVar ## Sample some true function values. y <- gaussSamp(Sigma=K, numSamps=1) xTest <- as.matrix(seq(0, 240, length=200)) graphics.off(); dev.new(); plot.new(); dev.new(); plot.new() exhaustivePlot(y, x, xTest, options=options, maxwidth=100, res=50, nlevels=75) }