\name{glpls1a} \alias{glpls1a} \title{Fit IRWPLS and IRWPLSF model} \description{ Fit Iteratively ReWeighted Least Squares (IRWPLS) with an option of Firth's bias reduction procedure (IRWPLSF) for two-group classification } \usage{ glpls1a(X, y, K.prov = NULL, eps = 0.001, lmax = 100, b.ini = NULL, denom.eps = 1e-20, family = "binomial", link = NULL, br = TRUE) } \arguments{ \item{X}{ n by p design matrix (with no intercept term)} \item{y}{ response vector 0 or 1} \item{K.prov}{ number of PLS components, default is the rank of X} \item{eps}{tolerance for convergence} \item{lmax}{ maximum number of iteration allowed } \item{b.ini}{ initial value of regression coefficients} \item{denom.eps}{ small quanitity to guarantee nonzero denominator in deciding convergence} \item{family}{ glm family, \code{binomial} is the only relevant one here } \item{link}{ link function, \code{logit} is the only one practically implemented now} \item{br}{TRUE if Firth's bias reduction procedure is used} } \details{ } \value{ \item{coefficients }{regression coefficients} \item{convergence }{whether convergence is achieved} \item{niter}{total number of iterations} \item{bias.reduction}{whether Firth's procedure is used} \item{loading.matrix}{the matrix of loadings} } \references{ \itemize{ \item Ding, B.Y. and Gentleman, R. (2003) \emph{Classification using generalized partial least squares}. \item Marx, B.D (1996) Iteratively reweighted partial least squares estimation for generalized linear regression. \emph{Technometrics} 38(4): 374-381. } } \author{Beiying Ding, Robert Gentleman} \note{} \seealso{ \code{\link{glpls1a.mlogit}}, \code{\link{glpls1a.logit.all}}, \code{\link{glpls1a.train.test.error}}, \code{\link{glpls1a.cv.error}}, \code{\link{glpls1a.mlogit.cv.error}}} \examples{ x <- matrix(rnorm(20),ncol=2) y <- sample(0:1,10,TRUE) ## no bias reduction glpls1a(x,y,br=FALSE) ## no bias reduction and 1 PLS component glpls1a(x,y,K.prov=1,br=FALSE) ## bias reduction glpls1a(x,y,br=TRUE) } \keyword{regression}