\name{pprob.uniform} \alias{pprob.uniform} \title{Bayesian diagnostic test for multiple testing p-values.} \description{ This function accepts a vector of simulated null p-values from a single simulated study. The null p-values should representa subset of all the simulated p-values corresponding to the tests with no signal. } \usage{ pprob.uniform(p,alpha=c(0.1,10),beta=c(0.1,10),eps=1e-10) } \arguments{ \item{p}{An vector of null p-values from a single simulated study.} \item{alpha}{The range of the first parameter for the prior on the beta distribution.} \item{beta}{The range of the second parameter for the prior on the beta distribution.} \item{eps}{Maximum integration error when computing the posterior distribution.} } \details{ The pprob.uniform function calculates the posterior probability that a set of null p-values come from the uniform distribution as described in Leek and Storey (2009). The p-values should be simulated from a realistic distribution and only the null p-values should be passed to the pprob.uniform function. } \value{ \item{pp}{The posterior probability that p is a sample from the uniform distribution.} } \references{ J.T. Leek and J.D. Storey, "The Joint Null Distribution of Multiple Hypothesis Tests." } \author{Jeffrey T. Leek \email{jleek@jhsph.edu}} \seealso{\code{\link{dks}}, \code{\link{dks.pvalue}}, \code{\link{pprob.dist}},\code{\link{cred.set}}} \examples{ ## Load data data(dksdata) pp <- pprob.uniform(P[,1]) hist(pp) } \keyword{misc}