\name{interactiontable} \alias{interactiontable} \title{ Returns a list of interactions with associated statistics. } \description{ This is a extanded wrapper around the topTable function from the limma package, as an option the ordinary t statistics can be calculated as well. } \usage{ interactiontable(ebfit, sort = "none", ord.t = FALSE, correction = "BH") } \arguments{ \item{ebfit}{ \code{ebfit} a MArrayLM object produced by the eBayes function } \item{sort}{ character string specifying which statistic to rank genes by, possible arguments are none, ID,size, t,B,adj.P.val,P.Value, and if ord.t = TRUE: ord.t, ord.p and ord.p.adj. } \item{ord.t}{ Logical, should ordinary t statistics be calculted? Default is FALSE. } \item{correction}{ method used to adjust the p-values for multiple testing. Default is BH. See \code{p.adjust} for the complete list of options. } } \value{ Returns a dataframe where the rows are the interaction pairs and the columns the statistics: ID: Interaction pair if size: the average interaction size t: the moderated t statistics P.Value: p-value for the moderated t statistics adj.P.Val: adjusted p-value B: the b statistics if the ord.t=TRUE, the ordinary t statistics (ord.t), with correspnding p-values (ord.p) and adjusted p-values (ord.p.adj) } \author{ Elin Axelsson } \section{Warning }{ usage of the ordinary t statistics is not recommended for data sets with few replicates. } \seealso{ \code{\link{p.adjust}},\code{\link{topTable}} } \examples{ ## simulated data y <- matrix(rnorm(50*4,sd=1),50,4) rownames(y) <- paste("Pair",1:50) # fit and eBayes fit <- lmFit(y) fit <- eBayes(fit) tt = interactiontable(fit,sort="size") head(tt) }