\name{clusterComp} \docType{methods} \alias{clusterComp} \alias{do.clusterComp} \alias{clusterComp-methods} \alias{clusterComp,matrix-method} \alias{clusterComp,ExpressionSet-method} \title{Estimate Microarray Cluster Stability} \description{ This function estimates the stability of clustering solutions using microarray data. Currently only agglomerative hierarchical clustering is supported. } \usage{ \S4method{clusterComp}{ExpressionSet}(object, cl, seednum = NULL, B = 100, sub.frac = 0.8, method = "ave", distmeth = "euclidean", adj.score = FALSE) \S4method{clusterComp}{matrix}(object, cl, seednum = NULL, B = 100, sub.frac = 0.8, method = "ave", distmeth = "euclidean", adj.score = FALSE) } \arguments{ \item{object}{Either a matrix or \code{ExpressionSet}} \item{cl}{ The number of clusters. This may be estimated using \code{benhur}} \item{seednum}{A value to pass to \code{set.seed}, which will allow for exact reproducibility at a later date.} \item{B}{ The number of permutations.} \item{sub.frac}{The proportion of genes to use in each subsample. This value should be in the range of 0.75 - 0.85 for best results} \item{method}{ The linkage method to pass to \code{hclust}. Valid values include "average", "centroid", "ward", "single", "mcquitty", or "median".} \item{distmeth}{The distance method to use. Valid values include "euclidean" and "pearson", where pearson implies 1-pearson correlation.} \item{adj.score}{Boolean. Should the stability scores be adjusted for cluster size? Defaults to \code{FALSE}.} } \details{ This function estimates the stability of a clustering solution by repeatedly subsampling the data and comparing the cluster membership of the subsamples to the original clusters. } \value{ The output from this function is an object of class \code{clusterComp}. See the \code{clusterComp-class} man page for more information. } \references{A. Ben-Hur, A. Elisseeff and I. Guyon. A stability based method for discovering structure in clustered data. Pacific Symposium on Biocomputing, 2002. Smolkin, M. and Ghosh, D. (2003). Cluster stability scores for microarray data in cancer studies . BMC Bioinformatics 4, 36 - 42.} \author{James W. MacDonald } \examples{ data(sample.ExpressionSet) clusterComp(sample.ExpressionSet, 3) } \keyword{cluster }% at least one, from doc/KEYWORDS