\name{findCorrPartners} \alias{findCorrPartners} \title{ Determines Genes with Highly Correlated Expression Profiles to a Synexpression Group } \description{ This function finds genes with expression profiles highly correlated to a synexpression group. } \usage{ findCorrPartners(mySynExpressionSet, myEset, removeGenes = NULL, cor.cutoff = 0.85, ...) } \arguments{ \item{mySynExpressionSet}{ \code{SynExpressionSet} object. } \item{myEset}{ \code{ExpressionSet} object. } \item{removeGenes}{ \code{vector} of probes that specify those genes who demonstrate little variability across the different celltypes and thus should be removed from downstream analysis. } \item{cor.cutoff}{ numeric value specifying the correlation cut-off. } \item{\dots}{ additional arguments. } } \details{ Genes with highly correlated profiles to the synexpression groups (e.g. R > 0.85) are also likely to be integral in maintaining cell type-specific differences, however due to their lack of inclusion in resources like KEGG, would not have been picked up by the first GSEA step using \code{findAttractors}. } \value{ A \code{SynExpressionSet} object which stores the genes that are highly correlated with the synexpression group provided, and their average expression profile. } \author{ Jessica Mar } \examples{ data(subset.loring.eset) attractor.states <- findAttractors(subset.loring.eset, "celltype", nperm=10, annotation="illuminaHumanv1.db") remove.these.genes <- removeFlatGenes(subset.loring.eset, "celltype", contrasts=NULL, limma.cutoff=0.05) mapk.syn <- findSynexprs("04010", attractor.states, remove.these.genes) mapk.cor <- findCorrPartners(mapk.syn, subset.loring.eset, remove.these.genes) } \keyword{methods}