\name{calcRss} \alias{calcRss} \title{ Function calculates the average RSS for a set of cluster assignments. } \description{ Function calculates the average RSS for a set of cluster assignments. } \usage{ calcRss(exprs.dat, cl, class.vector) } \arguments{ \item{exprs.dat}{ a \code{matrix} of gene expression values. } \item{cl}{ a \code{vector} of cluster assignments. } \item{class.vector}{ a \code{vector} specifying the group membership of the samples. } } \details{ This function is called internally by \code{findSynexprs}. For an informative cluster, the RSS values should be very small relative to those produced by the informativeness metric (the MSS values). } \value{ A numeric value representing the average RSS value for this set of cluster assignments. } \author{ Jessica Mar } \examples{ \dontrun{ library(cluster) data(subset.loring.eset) clustObj <- agnes(as.dist(1-t(cor(exprs(subset.loring.eset))))) crss.vals <- NULL for( i in 1:10 ){ crss.vals <- c(crss.vals, calcRss(exprs(subset.loring.eset), cutree(clustObj,i), pData(subset.loring.eset)$celltype)) } # The RSS values are expected to be smaller than the informativeness metric values in the presence of genuine cluster structure. } } \keyword{methods}