\name{xde} \alias{xde} \title{Fit the Bayesian hierarchical model for cross-study differential gene expression} \description{ Fits the Bayesian hierarchical model for cross-study differential gene expression. } \usage{ xde(paramsMcmc, esetList, outputMcmc, batchSize=NULL, NCONC=2, center=TRUE, ...) } \arguments{ \item{paramsMcmc}{Object of class \code{XdeParameter}} \item{esetList}{Object of class \code{ExpressionSetList}} \item{outputMcmc}{Object of class \code{XdeMcmc} (optional)} \item{batchSize}{Integer or NULL. The number of iterations written to log files before summarizing the chain and then removing. Experimental.} \item{NCONC}{The number of studies for which a gene must be differentially expressed in the same direction to be considered as concordantly differentially expressed.} \item{center}{Logical. If TRUE, each study is centered to have mean zero.} \item{\dots}{Additional arguments passed to \code{xdeFit}.} } \details{ Details for fitting the Bayesian model are discussed elsewhere (see citation below and XdeParameterClass vignette) If an integer is specified for the batchSize, summary statistics for the log-files are calculated for every batchSize iterations. The log files are then removed and the next iteration will start a new log file. This allows one to do many iterations without creating enormous log files. This is only reasonable to do if one has already assessed convergence. } \value{ Object of class \code{XdeMcmc} } \references{ R. Scharpf et al., A Bayesian Model for Cross-Study Differential Gene Expression, JASA 2009, p1295--1310. } \author{R. Scharpf} \note{ See the vignettes for XdeParameterClass and XDE. } \seealso{\code{\link{XdeMcmc-class}}, \code{\link{XdeParameter-class}}, \code{\link{ExpressionSetList-class}}} \examples{ \dontrun{ data(expressionSetList) xparam <- new("XdeParameter", phenotypeLabel="adenoVsquamous", esetList=expressionSetList) iterations(xparam) <- 10 fit <- xde(xparam, esetList=expressionSetList) } } \keyword{models} \keyword{multivariate}