\name{spViewPerFeature} \alias{spViewPerFeature} \title{ Tools to visualize genomic data } \description{ Use \code{Snapshot}-class to visulatize a specific region of genomic data } \usage{ spViewPerFeature(GRL, name, files, ignore.strand=FALSE, multi.levels = FALSE, fac=character(0L), ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{GRL}{Object \code{GRangeList} containing annotation of genomic data. It can be generated by applying \code{exonsBy()} or \code{transcriptsBy()} to a \code{TranscriptDb} instance. See examples below.} \item{name}{Character(1) specifying which element in \code{GRL} to be visualized.} \item{files}{Charactor() or \code{BamFileList} specifying the file(s) to be visuliazed. If multiple files, local metadata of the files can be hold by setting a \code{DataFrame} (values(files) <- DataFrame(...)). See examples below.} \item{ignore.strand}{Logical(1) indicating whether to ignore the strand of the genomic data.} \item{multi.levels}{Logical(1) inidicating whether to plot the coverage of multiple files on different panels. If \code{FALSE}, the mean coverage of multiple files would be plotted. } \item{fac}{Character(1) indicating which column of local metadata (\code{elementMetatdata()}) should be used to group the samples. Ignore} \item{\dots}{Arguments used for createing a \code{\link{Snapshot}} object.} } \value{A \code{Snapshot} instance} \author{Chao-Jen Wong \email{cwon2@fhcrc.org}} \seealso{ \code{\link{Snapshot}} } \examples{ ## Example 1 library(GenomicFeatures) txdbFile <- system.file("extdata", "sacCer2_sgdGene.sqlite", package="yeastNagalakshmi") ## either use a txdb file quaried from UCSC or use existing TxDb packages. txdb <- loadFeatures(txdbFile) grl <- exonsBy(txdb, by="gene") file <- system.file("extdata", "SRR002051.chrI-V.bam", package="yeastNagalakshmi") s <- spViewPerFeature(GRL=grl, name="YAL001C", files=file) ## Example 2 ## multi-files: using 'BamFileList' and setting up the 'DataFrame' ## holding the phenotype data bfiles <- BamFileList(c(file, file)) values(bfiles) <- DataFrame(sampleGroup=factor(c("normal", "tumor"))) values(bfiles) s <- spViewPerFeature(GRL=grl, name="YAL001C", files=bfiles, multi.levels=TRUE, fac="sampleGroup") }