\name{plotEffectSize} \alias{plotEffectSize} \title{Plots the density of effect sizes of the pilot data} \description{The function \code{plotEffectSize} plots density of effect sizes of the pilot data.} \usage{plotEffectSize(x, threshold = 0, xlab = "effect size", ylab = "density of effect sizes", main, sub, \dots)} \arguments{ \item{x}{object of class \code{\link{SampleSize-class}}} \item{threshold}{threshold for truncation of the density of effect-sizes. The threshold will be taken symmetrical around the y-axis.} \item{xlab}{a title for the x axis} \item{ylab}{a title for the y axis} \item{main}{an overall title for the plot} \item{sub}{a sub title for the plot} \item{\dots}{additional arguments given to \code{\link{plot}} or \code{\link{par}}} } \details{The density of effect sizes describes the effects observed in the pilot data. Usually a bimodal density is observed representing up- and down-regulated genes. The way in which the test statistics is calculated determines what is meant by up- and down-regulation. A small symmetrical region around zero can be defined that will be excluded from the density of effect sizes and thereby increases the estimated average power. } \references{ Ferreira, F.A., Zwinderman, A., (2006). Approximate Power and Sample Size Calculations with Microarray Data: An Illustration. \emph{Statistical Applications in Genetics and Molecular Biology} 5, (1).} \examples{ library(multtest) data(golub) teststat <- mt.teststat(golub, golub.cl) table(golub.cl) pd <- pilotData(name="golub", testStatistics=teststat, sampleSizeA=11, sampleSizeB=27) hist(pd) plot(pd) ss <- sampleSize(pd) plotEffectSize(ss) } \keyword{hplot}