\name{p.int2} \alias{p.int2} \title{Calculates significance of intensity-dependent bias} \description{This function assesses the significance of intensity-dependent bias. This is achieved by comparing the observed average values of logged fold-changes within an intensity neighbourhood with an empirical distribution generated by permutation tests. The significance is given by (adjusted) p-values.} \usage{p.int2(object,delta=50,N=-1,av="median",p.adjust.method="none")} \arguments{\item{object}{object of class marrayRaw or marrayNorm} \item{delta}{integer determining the size of the neighbourhood (\code{2 * delta+1}).} \item{N}{number of random samples (of size \code{2 * delta+1}) used for the generation of empirical distribution. If N is negative, the number of samples 100 times the length of \code{A}. } \item{av}{averaging of \code{M} within neighbourhood by \emph{mean} or \emph{median} (default)} \item{p.adjust.method}{method for adjusting p-values due to multiple testing regime. The available methods are \dQuote{none}, \dQuote{bonferroni}, \dQuote{holm}, \dQuote{hochberg}, \dQuote{hommel} and \dQuote{fdr}. See also \code{\link{p.adjust}}} } \details{This function \code{p.int2} is basically the same as \code{p.int} except for differences in their in- and output format. For the details about the functionality, see \code{\link{p.int}}. } \note{This function will be merged with \code{p.int} in future versions.} \author{Matthias E. Futschik (\url{http://itb.biologie.hu-berlin.de/~futschik})} \seealso{\code{\link{p.int}},\code{\link{fdr.int2}}, \code{\link{sigint.plot2}}, \code{\link{p.adjust}}} \examples{ # To run these examples, "un-comment" them! # # LOADING DATA NOT-NORMALISED # data(sw) # CALCULATION OF SIGNIFICANCE OF SPOT NEIGHBOURHOODS # For this illustration, N was chosen rather small. For "real" analysis, it should be larger. # P <- p.int2(sw,delta=50,N=10000,av="median",p.adjust.method="none") # VISUALISATION OF RESULTS # sigint.plot2(sw[,1],Sp=P$Pp[[1]],Sn=P$Pn[[1]],c(-5,-5)) # array 1 # sigint.plot2(sw[,3],Sp=P$Pp[[3]],Sn=P$Pn[[3]],c(-5,-5)) # array 3 } \keyword{nonparametric} \keyword{univar} \keyword{htest}