\name{stabMeasureM} \alias{stabMeasureM} \title{ Gene expression stability value M } \description{ Computation of the gene expression stability value M for real-time quantitativ RT-PCR data. For more details we refer to Vandesompele et al. (2002). } \usage{ stabMeasureM(x, log = TRUE, na.rm = TRUE) } \arguments{ \item{x}{ matrix or data.frame containing real-time quantitative RT-PCR data } \item{log}{ logical: is data on log-scale } \item{na.rm}{ a logical value indicating whether \code{NA} values should be stripped before the computation proceeds. } } \details{ The gene expression stability value M is defined as the average pairwise normalization factor; i.e., one needs to specify data from at least two genes. For more details see Vandesompele et al. (2002). Note this dispatches on a transposed expression matrix, not a qPCRBatch object since it is only called from within the selectHKs method. } \value{ numeric vector with gene expression stability values } \references{ Jo Vandesompele, Katleen De Preter, Filip Pattyn et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 2002. 3(7):research0034.1-0034.11. \url{http://genomebiology.com/2002/3/7/research/0034/} } \author{ Matthias Kohl \email{Matthias.Kohl@stamats.de}} %\note{ ~~further notes~~ % % ~Make other sections like Warning with \section{Warning }{....} ~ %} \seealso{\code{selectHKs}} \examples{ data(geNorm) tissue <- as.factor(c(rep("BM", 9), rep("FIB", 20), rep("LEU", 13), rep("NB", 34), rep("POOL", 9))) res.BM <- selectHKs(geNorm.qPCRBatch[,tissue == "BM"], method = "geNorm", Symbols = featureNames(geNorm.qPCRBatch), minNrHK = 2, log = FALSE) } \keyword{data}