\name{plotCtCor} \Rdversion{1.1} \alias{plotCtCor} \title{Correlation between Ct values from qPCR data} \description{Function for plotting the correlation based on Ct values between samples containing high-throughput qPCR data.} \usage{ plotCtCor(q, col, col.range = c(0, 1), main, mar, ...) } \arguments{ \item{q}{object of class qPCRset. } %% \item{plot}{character string among "Ct" (default), "dCt" and "ddCt". See Details for a longer description.} \item{col}{vector of colours to use, defaults to a spectrum from red to blue/purple.} \item{col.range}{vector, the range of colours to use.} \item{main}{character string, plot title.} \item{mar}{vector, the size of the borrom and right hand side margins.} \item{\dots}{any other arguments will be passed to the \code{heatmap.2} function.} } \details{This function may be used to cluster the samples based on Ct values and present the result in a heatmap. Per default the colours are a rainbow scale from 0 to 1. The correlation is calculated as 1 - the 'Pearson' method. Prior to version 1.9.1 the value plotted was the correlation directly, rather than 1-correlation. A standard heatmap is drawn, but this can be modified extensively using the arguments available in the \code{heatmap.2} function.} \value{A plot is created on the current graphics device.} \author{Heidi Dvinge} \seealso{\code{\link[gplots]{heatmap.2}} } \examples{ data(qPCRraw) plotCtCor(qPCRraw) plotCtCor(qPCRraw, col.range=c(0,0.6)) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{hplot}