\name{cigar-utils} \Rdversion{1.1} \alias{cigar-utils} \alias{validCigar} \alias{cigarOpTable} \alias{cigarToQWidth} \alias{cigarToWidth} \alias{cigarQNarrow} \alias{cigarNarrow} \alias{cigarToIRanges} \alias{cigarToIRangesListByAlignment} \alias{cigarToIRangesListByRName} \alias{queryLoc2refLoc} \alias{queryLocs2refLocs} \alias{splitCigar} \alias{cigarToRleList} \alias{cigarToCigarTable} \alias{summarizeCigarTable} \title{ CIGAR utility functions } \description{ Utility functions for low-level CIGAR manipulation. } \usage{ cigarOpTable(cigar) cigarToQWidth(cigar, before.hard.clipping=FALSE) cigarToWidth(cigar) cigarQNarrow(cigar, start=NA, end=NA, width=NA) cigarNarrow(cigar, start=NA, end=NA, width=NA) cigarToIRanges(cigar, drop.D.ranges=FALSE, drop.empty.ranges=FALSE, reduce.ranges=TRUE) cigarToIRangesListByAlignment(cigar, pos, flag=NULL, drop.D.ranges=FALSE, drop.empty.ranges=FALSE, reduce.ranges=TRUE) cigarToIRangesListByRName(cigar, rname, pos, flag=NULL, drop.D.ranges=FALSE, drop.empty.ranges=FALSE, reduce.ranges=TRUE) queryLoc2refLoc(qloc, cigar, pos=1) queryLocs2refLocs(qlocs, cigar, pos, flag=NULL) splitCigar(cigar) cigarToRleList(cigar) cigarToCigarTable(cigar) summarizeCigarTable(x) } \arguments{ \item{cigar}{ A character vector/factor containing the extended CIGAR string for each read. For \code{cigarToIRanges} and \code{queryLoc2refLoc}, this must be a single string (i.e. a character vector/factor of length 1). } \item{before.hard.clipping}{ Should the returned widths be the lengths of the reads before or after "hard clipping"? Hard clipping of a read is encoded with an H in the CIGAR. If NO (\code{before.hard.clipping=FALSE}, the default), then the returned widths are the lengths of the query sequences stored in the SAM/BAM file. If YES (\code{before.hard.clipping=TRUE}), then the returned widths are the lengths of the original reads. } \item{start,end,width}{ Vectors of integers. NAs and negative values are accepted and "solved" according to the rules of the SEW (Start/End/Width) interface (see \code{?\link[IRanges]{solveUserSEW}} for the details). } \item{drop.D.ranges}{ Should the ranges corresponding to a deletion from the reference (encoded with a D in the CIGAR) be dropped? By default we keep them to be consistent with the pileup tool from SAMtools. Note that, when \code{drop.D.ranges} is \code{TRUE}, then Ds and Ns in the CIGAR are equivalent. } \item{drop.empty.ranges}{ Should empty ranges be dropped? } \item{reduce.ranges}{ Should adjacent ranges coming from the same cigar be merged or not? Using \code{TRUE} (the default) can significantly reduce the size of the returned object. } \item{pos}{ An integer vector containing the 1-based leftmost position/coordinate for each (eventually clipped) read sequence. } \item{flag}{ \code{NULL} or an integer vector containing the SAM flag for each read. According to the SAM specs, flag bit 0x004 has the following meaning: when bit 0x004 is ON then "the query sequence itself is unmapped". When \code{flag} is provided, \code{cigarToIRangesListByAlignment} and \code{cigarToIRangesListByRName} ignore these reads. } \item{rname}{ A character vector/factor containing the name of the reference sequence associated with each read (i.e. the name of the sequence the read has been aligned to). } \item{qloc}{ An integer vector containing "query-based locations" i.e. 1-based locations relative to the query sequence stored in the SAM/BAM file. } \item{qlocs}{ A list of the same length as \code{cigar} where each element is an integer vector containing "query-based locations" i.e. 1-based locations relative to the corresponding query sequence stored in the SAM/BAM file. } \item{x}{ A \link[IRanges]{DataFrame} produced by \code{cigarToCigarTable}. } } \value{ For \code{cigarOpTable}: An integer matrix with number of rows equal to the length of \code{cigar} and seven columns, one for each extended CIGAR operation. For \code{cigarToQWidth}: An integer vector of the same length as \code{cigar} where each element is the width of the query (i.e. the length of the query sequence) as inferred from the corresponding element in \code{cigar} (NAs in \code{cigar} will produce NAs in the returned vector). For \code{cigarQNarrow} and \code{cigarNarrow}: A character vector of the same length as \code{cigar} containing the narrowed cigars. In addition the vector has an "rshift" attribute which is an integer vector of the same length as \code{cigar}. It contains the values that would need to be added to the POS field of a SAM/BAM file as a consequence of this cigar narrowing. For \code{cigarToWidth}: An integer vector of the same length as \code{cigar} where each element is the width of the alignment (i.e. its total length on the reference, gaps included) as inferred from the corresponding element in \code{cigar} (NAs in \code{cigar} will produce NAs in the returned vector). For \code{cigarToIRanges}: An \link[IRanges]{IRanges} object describing where the bases in the read align with respect to an imaginary reference sequence assuming that the leftmost aligned base is at position 1 in the reference (i.e. at the first position). For \code{cigarToIRangesListByAlignment}: A \link[IRanges]{CompressedIRangesList} object of the same length as \code{cigar}. For \code{cigarToIRangesListByRName}: A named \link[IRanges]{IRangesList} object with one element (\link[IRanges]{IRanges}) per unique reference sequence. For \code{queryLoc2refLoc}: An integer vector of the same length as \code{qloc} containing the "reference-based locations" (i.e. the 1-based locations relative to the reference sequence) corresponding to the "query-based locations" passed in \code{qloc}. For \code{queryLocs2refLocs}: A list of the same length as \code{qlocs} where each element is an integer vector containing the "reference-based locations" corresponding to the "query-based locations" passed in the corresponding element in \code{qlocs}. For \code{splitCigar}: A list of the same length as \code{cigar} where each element is itself a list with 2 elements of the same lengths, the 1st one being a raw vector containing the CIGAR operations and the 2nd one being an integer vector containing the lengths of the CIGAR operations. For \code{cigarToRleList}: A \link[IRanges]{CompressedRleList} object. For \code{cigarToCigarTable}: A frequency table of the CIGARs in the form of a \link[IRanges]{DataFrame} with two columns: \code{cigar} (a \link[IRanges]{CompressedRleList}) and \code{count} (an integer). For \code{summarizeCigarTable}: A list with two elements: \code{AlignedCharacters} (integer) and \code{Indels} (matrix) } \references{ \url{http://samtools.sourceforge.net/} } \author{ H. Pages and P. Aboyoun } \seealso{ \link[IRanges]{IRanges-class}, \link[IRanges]{IRangesList-class}, \code{\link[IRanges]{coverage}}, \link[IRanges]{RleList-class} } \examples{ ## --------------------------------------------------------------------- ## A. SIMPLE EXAMPLES ## --------------------------------------------------------------------- ## With a cigar vector of length 1: cigar1 <- "3H15M55N4M2I6M2D5M6S" ## cigarToQWidth()/cigarToWidth(): cigarToQWidth(cigar1) cigarToQWidth(cigar1, before.hard.clipping=TRUE) cigarToWidth(cigar1) ## cigarQNarrow(): cigarQNarrow(cigar1, start=4, end=-3) cigarQNarrow(cigar1, start=10) cigarQNarrow(cigar1, start=19) cigarQNarrow(cigar1, start=24) ## cigarNarrow(): cigarNarrow(cigar1) # only drops the soft/hard clipping cigarNarrow(cigar1, start=10) cigarNarrow(cigar1, start=15) cigarNarrow(cigar1, start=15, width=57) cigarNarrow(cigar1, start=16) #cigarNarrow(cigar1, start=16, width=55) # ERROR! (empty cigar) cigarNarrow(cigar1, start=71) cigarNarrow(cigar1, start=72) cigarNarrow(cigar1, start=75) ## cigarToIRanges(): cigarToIRanges(cigar1) cigarToIRanges(cigar1, reduce.ranges=FALSE) cigarToIRanges(cigar1, drop.D.ranges=TRUE) ## With a cigar vector of length 4: cigar2 <- c("40M", cigar1, "2S10M2000N15M", "3H25M5H") pos <- c(1, 1001, 1, 351) cigarToIRangesListByAlignment(cigar2, pos) rname <- c("chr6", "chr6", "chr2", "chr6") cigarToIRangesListByRName(cigar2, rname, pos) cigarOpTable(cigar2) splitCigar(cigar2) cigarToRleList(cigar2) cigarToCigarTable(cigar2) cigarToCigarTable(cigar2)[,"cigar"] cigarToCigarTable(cigar2)[,"count"] summarizeCigarTable(cigarToCigarTable(cigar2)) ## --------------------------------------------------------------------- ## B. PERFORMANCE ## --------------------------------------------------------------------- if (interactive()) { ## We simulate 20 millions aligned reads, all 40-mers. 95% of them ## align with no indels. 5% align with a big deletion in the ## reference. In the context of an RNAseq experiment, those 5% would ## be suspected to be "junction reads". set.seed(123) nreads <- 20000000L njunctionreads <- nreads * 5L / 100L cigar3 <- character(nreads) cigar3[] <- "40M" junctioncigars <- paste( paste(10:30, "M", sep=""), paste(sample(80:8000, njunctionreads, replace=TRUE), "N", sep=""), paste(30:10, "M", sep=""), sep="") cigar3[sample(nreads, njunctionreads)] <- junctioncigars some_fake_rnames <- paste("chr", c(1:6, "X"), sep="") rname <- sample(some_fake_rnames, nreads, replace=TRUE) pos <- sample(80000000L, nreads, replace=TRUE) ## The following takes < 5 sec. to complete: system.time(rglist <- cigarToIRangesListByAlignment(cigar3, pos)) ## The following takes < 10 sec. to complete: system.time(irl <- cigarToIRangesListByRName(cigar3, rname, pos)) ## Internally, cigarToIRangesListByRName() turns 'rname' into a factor ## before starting the calculation. Hence it will run sligthly ## faster if 'rname' is already a factor. rname2 <- as.factor(rname) system.time(irl2 <- cigarToIRangesListByRName(cigar3, rname2, pos)) ## The sizes of the resulting objects are about 240M and 160M, ## respectively: object.size(rglist) object.size(irl) } ## --------------------------------------------------------------------- ## C. COMPUTE THE COVERAGE OF THE READS STORED IN A BAM FILE ## --------------------------------------------------------------------- ## The information stored in a BAM file can be used to compute the ## "coverage" of the mapped reads i.e. the number of reads that hit any ## given position in the reference genome. ## The following function takes the path to a BAM file and returns an ## object representing the coverage of the mapped reads that are stored ## in the file. The returned object is an RleList object named with the ## names of the reference sequences that actually receive some coverage. extractCoverageFromBAM <- function(file) { ## This ScanBamParam object allows us to load only the necessary ## information from the file. param <- ScanBamParam(flag=scanBamFlag(isUnmappedQuery=FALSE, isDuplicate=FALSE), what=c("rname", "pos", "cigar")) bam <- scanBam(file, param=param)[[1]] ## Note that unmapped reads and reads that are PCR/optical duplicates ## have already been filtered out by using the ScanBamParam object above. irl <- cigarToIRangesListByRName(bam$cigar, bam$rname, bam$pos) irl <- irl[elementLengths(irl) != 0] # drop empty elements coverage(irl) } library(Rsamtools) f1 <- system.file("extdata", "ex1.bam", package="Rsamtools") extractCoverageFromBAM(f1) } \keyword{manip}