% inbreeding.Rd %-------------------------------------------------------------------------- % What: Inbreeding coefficient (F) man page % $Id: inbreeding.Rd 1172 2007-04-03 14:05:59Z ggorjan $ % Time-stamp: <2007-04-01 23:11:29 ggorjan> %-------------------------------------------------------------------------- \name{inbreeding} \alias{inbreeding} \concept{consanguinity} \title{Inbreeding coefficient} \description{\code{inbreeding} calculates inbreeding coefficients of individuals in the pedigree} \usage{inbreeding(x, method="meuwissen", sort=TRUE, names=TRUE, \ldots)} \arguments{ \item{x}{pedigree object} \item{method}{character, method of calculation "tabular", "meuwissen" or "sargolzaei", see details} \item{sort}{logical, for the computation the pedigree needs to be sorted, but results are sorted back to original sorting (sort=TRUE) or not (sort=FALSE)} \item{names}{logical, should returned vector have names; this can be used to get leaner returned object} \item{\ldots}{arguments for other methods} } \details{ Coefficient of inbreeding (\eqn{F}) represents probability that two alleles on a loci are identical by descent (Wright, 1922; Falconer and Mackay, 1996). Wright (1922) showed how \eqn{F} can be calculated but his method of paths is not easy to wrap in a program. Calculation of \eqn{F} can also be performed using tabular method for setting the additive relationship matrix (Henderson, 1976), where \eqn{F_i = A_{ii} - 1}. Meuwissen and Luo (1992) and VanRaden (1992) developed faster algorithms for \eqn{F} calculation. Wiggans et al. (1995) additionally explains method in VanRaden (1992). Sargolzaei et al. (2005) presented yet another fast method. Take care with \code{sort=FALSE, names=FALSE}. It is your own responsibility to assure proper handling in this case. } \references{ Falconer, D. S. and Mackay, T. F. C. (1996) Introduction to Quantitative Genetics. 4th edition. Longman, Essex, U.K. \url{http://www.amazon.com/gp/product/0582243025} Henderson, C. R. (1976) A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values. \emph{Biometrics} \bold{32}(1):69-83 Meuwissen, T. H. E. and Luo, Z. (1992) Computing inbreeding coefficients in large populations. \emph{Genetics Selection and Evolution} \bold{24}:305-313 Sargolzaei, M. and Iwaisaki, H. and Colleau, J.-J. (2005) A fast algorithm for computing inbreeding coefficients in large populations. \emph{Journal of Animal Breeding and Genetics} \bold{122}(5):325--331 \url{http://dx.doi.org/10.1111/j.1439-0388.2005.00538.x} VanRaden, P. M. (1992) Accounting for inbreeding and crossbreeding in genetic evaluation for large populations. \emph{Journal of Dairy Science} 75(11):3136-3144 \url{http://jds.fass.org/cgi/content/abstract/75/11/3136} Wiggans, G. R. and VanRaden, P. M. and Zuurbier, J. (1995) Calculation and use of inbreeding coefficients for genetic evaluation of United States dairy cattle. \emph{Journal of Dairy Science} \bold{78}(7):1584-1590 \url{http://jds.fass.org/cgi/content/abstract/75/11/3136} Wright, S. (1922) Coefficients of inbreeding and relationship. \emph{American Naturalist} 56:330-338 } \value{A vector of length \eqn{n} with inbreeding coefficients, where \eqn{n} is number of subjects in \code{x}} \author{Gregor Gorjanc and Dave A. Henderson} \seealso{\code{\link{Pedigree}}, \code{\link{relationshipAdditive}}, \code{\link{kinship}} and \code{\link{geneFlowT}}} \examples{ data(Mrode2.1) Mrode2.1$dtB <- as.Date(Mrode2.1$dtB) x2.1 <- Pedigree(x=Mrode2.1, subject="sub", ascendant=c("fat", "mot"), ascendantSex=c("M", "F"), family="fam", sex="sex", generation="gen", dtBirth="dtB") fractions(inbreeding(x=x2.1)) ## Compare the speed ped <- generatePedigree(nId=25) system.time(inbreeding(x=ped)) # system.time(inbreeding(x=ped, method="sargolzaei")) # not yet implemented system.time(inbreeding(x=ped, method="tabular")) } \keyword{array} \keyword{misc} %-------------------------------------------------------------------------- % inbreeding.Rd ends here