\name{plotPriors} \alias{plotPriors} \title{Plot prior using parameter vector} \description{ Plot appropriate priors using parameters from vector } \usage{ plotPriors(parameter.vec) } \details{ This function takes the parameter vector that will be used for network inference function and plots the priors associated with the parameters given. } \arguments{ \item{parameter.vec}{MCMC parameter vector of the type generated by e.g. mcmc.defaultParams_Linear} } \references{ Morrissey, E.R., Juarez, M.A., Denby, K.J. and Burroughs, N.J. 2010. On reverse engineering of gene interaction networks using time course data with repeated measurements. Bioinformatics 2010; doi: 10.1093/bioinformatics/btq421 Morrissey, E.R., Juarez, M.A., Denby, K.J. and Burroughs, N.J. 2011 Inferring the time-invariant topology of a nonlinear sparse gene regulatory network using fully Bayesian spline autoregression Biostatistics 2011; doi: 10.1093/biostatistics/kxr009 } \seealso{ \code{\link{mcmc.defaultParams_gauss}}, \code{\link{mcmc.defaultParams_Linear}}, \code{\link{mcmc.defaultParams_nonLinear} }, \code{\link{mcmc.defaultParams_student} }. } \keyword{PlotPriors} \examples{ # Get default parameters nonLinearNet.params <- mcmc.defaultParams_nonLinear() # Change run length nonLinearNet.params[1] <- 150000 # Change prior on smoothness parameter nonLinearNet.params[6] <- 30000 # Change truncation nonLinearNet.params[12] <- 3 # Concentrate more mass close to linear region # Plot to check changes plotPriors(nonLinearNet.params) }