\name{mcmc.defaultParams_Linear} \alias{mcmc.defaultParams_Linear} \title{Default Parameters for Linear Model} \description{ Create parameter vector with default parameters for LinearNet function } \usage{ mcmc.defaultParams_Linear() } \details{ Use this function to generate a template parameter vector to use non-default parameters for the LinearNet model. } \value{ Returns a single vector with the following elements (in this order): \item{(1) samples}{Number of MCMC iterations to run.} \item{(2) burn.in}{Number of initial iterations to discard as burn in.} \item{(3) thin}{Subsampling frequency} \item{(4) c}{Shape parameter 1 for Beta(c,d) prior on rho (connectivity parameter)} \item{(5) d}{Shape parameter 2 for Beta(c,d) prior on rho (connectivity parameter)} \item{(6) sigma.s}{Standard deviation parameter for N(0,sigma.s) prior on B (Regression coefficients)} \item{(7) a}{Shape parameter for Gamma(a,b) prior on lambda (Regression precision)} \item{(8) b}{Rate parameter for Gamma(a,b) prior on lambda (Regression precision)} \item{(9) sigma.mu}{Standard deviation parameter for N(0,sigma.mu) prior on mu (Regression intercept)} } \references{ Morrissey, E.R., Juarez, M.A., Denby, K.J. and Burroughs, N.J. 2010. On reverse engineering of gene interaction networks using time course data with repeated measurements. Bioinformatics 2010; doi: 10.1093/bioinformatics/btq421 Morrissey, E.R., Juarez, M.A., Denby, K.J. and Burroughs, N.J. 2011 Inferring the time-invariant topology of a nonlinear sparse gene regulatory network using fully Bayesian spline autoregression Biostatistics 2011; doi: 10.1093/biostatistics/kxr009 } \seealso{ \code{\link{plotPriors}}, \code{\link{LinearNet}}. } \keyword{LinearNet} \examples{ # Get default parameters linearNet.params <- mcmc.defaultParams_Linear() # Change run length linearNet.params[1] <- 150000 # Change prior regression precision linearNet.params[7] <- 0.001 linearNet.params[8] <- 0.001 # Plot to check changes plotPriors(linearNet.params) ## Use to run LinearNet ... }