\name{analyse.output} \alias{analyse.output} \title{Analysis Plots} \description{ Analyse output from network inference functions. Basic convergence and analysis plots. } \usage{ analyse.output(output.folder, timeSeries = NULL) } \details{ Read first two chains run and plot some basic convergence plots (ConvergencePlots.pdf), analysis plots (AnalysisPlots.pdf), as well as inferred network probabilities in two formats (NetworkProbability_List.txt and NetworkProbability_Matrix.txt). } \arguments{ \item{output.folder}{Name of folder (including path) where chains are kept} \item{timeSeries}{Only used by NonLinearModel analysis. Data matrix containing gene expression time series. Where genes will be placed in rows and time points in columns.} } \value{ The output of the analysis will be four files (five if nonLinearNet). The contents of the two plot files change depending on the network inference function used. \item{ConvergencePlots.pdf}{Basic convergence plots. The posterior means of each variable are compared.} \item{AnalysisPlots.pdf}{Heatmap plot of network link probabilities as well as marginal network uncertainty plot. A plot of the number of links predicted by the model for a given probability threshold. For ReplicatesNet_student, the posterior distribution of the degrees of freedom are also plotted. For NonLinearNet, the posterior of the smoothness parameter is plotted.} \item{NetworkProbability_List.txt}{Posterior probabilities for each network connection in list format, including posterior interaction strength for linear models. Can be imported with network analysis software such as cytoscape.} \item{NetworkProbability_Matrix.txt}{Posterior probabilities for each network connection in matrix format.} \item{ProbNumParents.txt}{Posterior probabilities for number of regulators for each gene.} \item{InferredFunctionPlots.pdf}{(Only for nonLinearNet) Posterior distribution of predicted functions. Data values are plotted as circles.} } \references{ Morrissey, E.R., Juarez, M.A., Denby, K.J. and Burroughs, N.J. 2010. On reverse engineering of gene interaction networks using time course data with repeated measurements. Bioinformatics 2010; doi: 10.1093/bioinformatics/btq421 Morrissey, E.R., Juarez, M.A., Denby, K.J. and Burroughs, N.J. 2011 Inferring the time-invariant topology of a nonlinear sparse gene regulatory network using fully Bayesian spline autoregression Biostatistics 2011; doi: 10.1093/biostatistics/kxr009 } \seealso{ \code{\link{NonLinearNet}}, \code{\link{LinearNet}}, \code{\link{ReplicatesNet_student} }, \code{\link{ReplicatesNet_gauss}}. } \keyword{AnalyseOutput} \examples{ # Load A. thaliana circadian clock ODE generated data data(Athaliana_ODE) # Folder where raw runs will be kept and analysed output.folder <- paste(tempdir(), "/Example_LinearNet",sep="") # Run network inference, place raw results in output.folder LinearNet(output.folder, Athaliana_ODE) # Analyse raw results, place analysis plots and files in output.folder analyse.output(output.folder) }