\name{DiffBind -- DBA global constant variables} \alias{DBA_ID} \alias{DBA_FACTOR} \alias{DBA_TISSUE} \alias{DBA_CONDITION} \alias{DBA_TREATMENT} \alias{DBA_REPLICATE} \alias{DBA_CALLER} \alias{DBA_CONSENSUS} \alias{DBA_CONTROL} \alias{DBA_GROUP} \alias{DBA_OLAP_PEAKS} \alias{DBA_OLAP_ALL} \alias{DBA_OLAP_RATE} \alias{DBA_SCORE_READS} \alias{DBA_SCORE_READS_MINUS} \alias{DBA_SCORE_READS_FOLD} \alias{DBA_SCORE_RPKM} \alias{DBA_SCORE_RPKM_FOLD} \alias{DBA_SCORE_TMM_READS_FULL} \alias{DBA_SCORE_TMM_READS_EFFECTIVE} \alias{DBA_SCORE_TMM_MINUS_FULL} \alias{DBA_SCORE_TMM_MINUS_EFFECTIVE} \alias{DBA_EDGER} \alias{DBA_DESEQ} \alias{DBA_EDGER_BLOCK} \alias{DBA_DESEQ_BLOCK} \alias{DBA_EDGER_CLASSIC} \alias{DBA_DESEQ_CLASSIC} \alias{DBA_EDGER_GLM} \alias{DBA_DESEQ_GLM} \alias{DBA_DATA_FRAME} \alias{DBA_DATA_GRANGES} \alias{DBA_DATA_RANGEDDATA} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Constant variables used in DiffBind package } \description{ Constant variables used in DiffBind package } \usage{ DBA_ID DBA_FACTOR DBA_TISSUE DBA_CONDITION DBA_TREATMENT DBA_REPLICATE DBA_CALLER DBA_CONSENSUS DBA_CONTROL DBA_GROUP DBA_OLAP_PEAKS DBA_OLAP_ALL DBA_OLAP_RATE DBA_SCORE_READS DBA_SCORE_READS_MINUS DBA_SCORE_READS_FOLD DBA_SCORE_RPKM DBA_SCORE_RPKM_FOLD DBA_SCORE_TMM_READS_FULL DBA_SCORE_TMM_READS_EFFECTIVE DBA_SCORE_TMM_MINUS_FULL DBA_SCORE_TMM_MINUS_EFFECTIVE DBA_EDGER DBA_DESEQ DBA_EDGER_BLOCK DBA_DESEQ_BLOCK DBA_EDGER_CLASSIC DBA_DESEQ_CLASSIC DBA_EDGER_GLM DBA_DESEQ_GLM DBA_DATA_FRAME DBA_DATA_GRANGES DBA_DATA_RANGEDDATA } %- maybe also 'usage' for other objects documented here. \arguments{ \item{DBA_ID}{ DBA peakset metadata: Peakset ID } \item{DBA_FACTOR}{ DBA peakset metadata: Factor } \item{DBA_TISSUE}{ DBA peakset metadata: Tissue } \item{DBA_CONDITION}{ DBA peakset metadata: Condition } \item{DBA_TREATMENT}{ DBA peakset metadata: Treatment } \item{DBA_REPLICATE}{ DBA peakset metadata: Replicate } \item{DBA_CALLER}{ DBA peakset metadata: Peak Caller } \item{DBA_CONSENSUS}{ DBA peakset metadata: Is this a consensus peakset? } \item{DBA_CONTROL}{ DBA peakset metadata: ID of Control sample } \item{DBA_GROUP}{ DBA peakset metadata: color PCA plot using contras groups } \item{DBA_OLAP_PEAKS}{ dba.overlap mode: return overlapping/unique peaksets } \item{DBA_OLAP_ALL}{ dba.overlap mode: return report of correlations/overlaps for each pair of samples } \item{DBA_OLAP_RATE}{ dba.overlap mode: return overlap rates } \item{DBA_SCORE_READS}{ dba.count score is number of reads in ChIP } \item{DBA_SCORE_READS_FOLD}{ dba.count score is number of reads in ChIP divided by number of reads in Control } \item{DBA_SCORE_READS_MINUS}{ dba.count score is number of reads in ChIP minus number of reads in Control } \item{DBA_SCORE_RPKM}{ dba.count score is RPKM of ChIP } \item{DBA_SCORE_RPKM_FOLD}{ dba.count score is RPKM of ChIP divided by RPKM of Control } \item{DBA_SCORE_TMM_READS_FULL}{ dba.count score is TMM normalized (using edgeR), using ChIP read counts and Full Library size } \item{DBA_SCORE_TMM_READS_EFFECTIVE}{ dba.count score is TMM normalized (using edgeR), using ChIP read counts and Effective Library size } \item{DBA_SCORE_TMM_MINUS_FULL}{ dba.count score is TMM normalized (using edgeR), using ChIP read counts minus Control read counts and Full Library size } \item{DBA_SCORE_TMM_MINUS_EFFECTIVE}{ dba.count score is TMM normalized (using edgeR), using ChIP read counts minus Control read counts and Effective Library size } \item{DBA_EDGER}{ differential analysis method: edgeR (default: DBA_EDGER_GLM) } \item{DBA_DESEQ}{ differential analysis method: DESeq (default: DBA_DESEQ_CLASSIC) } \item{DBA_EDGER_CLASSIC}{ differential analysis method: "classic" edgeR for two-group comparisons } \item{DBA_DESEQ_CLASSIC}{ differential analysis method: "classic" DESeq for two-group comparisons } \item{DBA_EDGER_GLM}{ differential analysis method: use GLM in edgeR for two-group comparisons } \item{DBA_DESEQ_GLM}{ differential analysis method: use GLM in DESeq for two-group comparisons } \item{DBA_EDGER_BLOCK}{ differential analysis method: edgeR with blocking factors (GLM) } \item{DBA_DESEQ_BLOCK}{ differential analysis method: DESeq with blocking factors (GLM) } \item{DBA_DATA_GRANGES}{ Use GRanges class for peaksets and reports. This is the default (DBA$config$DataType = DBA_DATA_GRANGES). } \item{DBA_DATA_RANGEDDATA}{ Use RangedData class for peaksets and reports. Can be set as default (DBA$config$DataType = DBA_DATA_RANGEDDATA). } \item{DBA_DATA_FRAME}{ Use data.frame class for peaksets and reports. Can be set as default (DBA$config$DataType = DBA_DATA_FRAME). } } %\details{ %% %} %\value{ %} %\references{ %% ~put references to the literature/web site here ~ %} \author{ Rory Stark } \note{ Variables with ALL CAP names are used as constants within DiffBind. } %% ~Make other sections like Warning with \section{Warning }{....} ~ %\seealso{ %% ~~objects to See Also as \code{\link{help}}, ~~~ %} %\examples{ %} % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. %\keyword{ ~kwd1 } %\keyword{ ~kwd2 }% __ONLY ONE__ keyword per line