%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Do not modify this file since it was automatically generated from: % % ./hyper.test.R % % by the Rdoc compiler part of the R.oo package. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \name{hyper.test} \alias{hyper.test} \title{Performs an hypergeometric test of enrichment of a set of hypotheses in significant elements} \description{ Performs an hypergeometric test of enrichment of a set of hypotheses in significant elements. } \usage{hyper.test(p.values, testSet, thr=0.001, universe=length(p.values), verbose=FALSE)} \arguments{ \item{p.values}{A named \code{\link[base]{numeric}} vector giving the p-values of all tested elements.} \item{testSet}{A \code{\link[base]{character}} vector giving the ids of the elements in the tested set. Elements of 'testSet' must have a match in 'names(p.values)'.} \item{thr}{A \code{\link[base]{numeric}} value between 0 and 1 giving the threshold on p-values at which an element is declared to be significant.} \item{universe}{An \code{\link[base]{integer}} value giving the number of elelments in the considered universe. Defaults to 'length(p.values)'.} \item{verbose}{If \code{\link[base:logical]{TRUE}}, extra information is output.} } \value{ A \code{\link[base]{list}} with class "htest" containing the following components: \describe{ \item{statistic}{A \code{\link[base]{numeric}} value, the test statistic.} \item{p.value}{A \code{\link[base]{numeric}} value, the corresponding p-value.} } } \author{Laurent Jacob, Pierre Neuvial and Sandrine Dudoit} \seealso{ \code{\link{AN.test}}() \code{\link{BS.test}}() \code{\link{graph.T2.test}}() } \examples{ library("KEGGgraph") ## library("NCIgraph") library("rrcov") data("Loi2008_DEGraphVignette") exprData <- exprLoi2008 classData <- classLoi2008 rn <- rownames(exprData) ## Retrieve expression levels data for genes from one KEGG pathway gr <- grListKEGG[[1]] gids <- translateKEGGID2GeneID(nodes(gr)) mm <- match(gids, rownames(exprData)) ## Keep genes from the graph that are present in the expression data set idxs <- which(!is.na(mm)) gr <- subGraph(nodes(gr)[idxs], gr) idxs <- which(is.na(mm)) if(length(idxs)) { print("Gene ID not found in expression data: ") str(gids[idxs]) } dat <- exprData[na.omit(mm), ] str(dat) X1 <- t(dat[, classData==0]) X2 <- t(dat[, classData==1]) ## DEGraph T2 test res <- testOneGraph(gr, exprData, classData, verbose=TRUE, prop=0.2) ## T2 test (Hotelling) rT2 <- T2.test(X1, X2) str(rT2) ## Adaptive Neyman test rAN <- AN.test(X1, X2, na.rm=TRUE) str(rAN) ## Adaptive Neyman test from Fan and Lin (1998) rAN <- AN.test(X1, X2, na.rm=TRUE) str(rAN) ## Test from Bai and Saranadasa (1996) rBS <- BS.test(X1, X2, na.rm=TRUE) str(rBS) ## Hypergeometric test pValues <- apply(exprData, 1, FUN=function(x) { tt <- t.test(x[classData==0], x[classData==1]) tt$p.value }) str(pValues) names(pValues) <- rownames(exprData) rHyper <- hyper.test(pValues, gids, thr=0.01) str(rHyper) }