\name{BitSeq-package} \alias{BitSeq-package} \alias{BitSeq} \docType{package} \title{Bayesian Inference of Transcripts from Sequencing data} \description{ The BitSeq package is targeted for transcript expression analysis and differential expression analysis of RNA-seq data in two stage process. In the first stage it uses Bayesian inference methodology to infer expression of individual transcripts from individual RNA-seq experiments. The second stage of BitSeq embraces the differential expression analysis of transcript expression. Providing expression estimates from replicates of multiple conditions, Log-Normal model of the estimates is used for inferring the condition mean transcript expression and ranking the transcripts based on the likelihood of differential expression. } \details{ \tabular{ll}{ Package: \tab BitSeq\cr Type: \tab Package\cr Version: \tab 0.3.0\cr Date: \tab 2012-03-09\cr License: \tab Artistic-2.0 + other\cr } For details of using the package please refer to the Vignette. } \author{ Peter Glaus, Antti Honkela and Magnus Rattray Maintainer: Peter Glaus } \references{ Glaus, P., Honkela, A. and Rattray M. (2012) Identifying differentially expressed transcripts from RNA-seq data with biological variation. arXiv:1109.0863v2 [q-bio.GN] } \examples{\dontrun{ ## basic use res1 <- getExpression("data-c0b0.sam","ensSelect1.fasta") res2 <- getExpression("data-c0b1.sam","ensSelect1.fasta") res3 <- getExpression("data-c1b0.sam","ensSelect1.fasta") res4 <- getExpression("data-c1b1.sam","ensSelect1.fasta") deRes <- getDE( c(res1$fn, res2$fn), c(res3$fn, res4$fn)) ## top 10 differentially expressed head(deRes$pplr[ order(abs(0.5-deRes$pplr$pplr), decreasing=TRUE ), ], 10) ## advanced use, keeping the intermediate files parseAlignment( "data-c0b0.sam", outFile = "data-c0b0.prob", trSeqFile = "ensSelect1.fasta", trInfoFile = "data.tr", uniform = TRUE, verbose = TRUE ) estimateExpression( "data-c0b0.prob", outFile = "data-c0b0", outputType = "RPKM", trInfoFile = "data.tr", MCMC_burnIn = 200, MCMC_samplesN = 200, MCMC_samplesSave = 100, MCMC_scaleReduction = 1.1, MCMC_chainsN = 2 ) cond1Files = c("data-c0b0.rpkm","data-c0b1.rpkm") cond2Files = c("data-c1b1.rpkm","data-c1b1.rpkm") getMeanVariance(c(cond1Files,cond2Files), outFile = "data.means", log = TRUE ) estimateHyperPar(cond1Files, cond2Files, outFile = "data.par", meanFile = "data.means", verbose = TRUE ) estimateDE(cond1Files, cond2Files, outFile = "data", parFile = "data.par" ) }} \keyword{ package } %\seealso{%%~~ \code{\link[:-package]{}} ~~%%}