\name{substitution.matrices} \docType{data} \alias{substitution.matrices} \alias{BLOSUM45} \alias{BLOSUM50} \alias{BLOSUM62} \alias{BLOSUM80} \alias{BLOSUM100} \alias{PAM30} \alias{PAM40} \alias{PAM70} \alias{PAM120} \alias{PAM250} \alias{nucleotideSubstitutionMatrix} \alias{qualitySubstitutionMatrices} \alias{errorSubstitutionMatrices} \title{Scoring matrices} \description{ Predefined substitution matrices for nucleotide and amino acid alignments. } \usage{ data(BLOSUM45) data(BLOSUM50) data(BLOSUM62) data(BLOSUM80) data(BLOSUM100) data(PAM30) data(PAM40) data(PAM70) data(PAM120) data(PAM250) nucleotideSubstitutionMatrix(match = 1, mismatch = 0, baseOnly = FALSE, type = "DNA") qualitySubstitutionMatrices(fuzzyMatch = c(0, 1), alphabetLength = 4L, qualityClass = "PhredQuality", bitScale = 1) errorSubstitutionMatrices(errorProbability, fuzzyMatch = c(0, 1), alphabetLength = 4L, bitScale = 1) } \arguments{ \item{match}{the scoring for a nucleotide match.} \item{mismatch}{the scoring for a nucleotide mismatch.} \item{baseOnly}{\code{TRUE} or \code{FALSE}. If \code{TRUE}, only uses the letters in the "base" alphabet i.e. "A", "C", "G", "T".} \item{type}{either "DNA" or "RNA".} \item{fuzzyMatch}{a named or unnamed numeric vector representing the base match probability.} \item{errorProbability}{a named or unnamed numeric vector representing the error probability.} \item{alphabetLength}{an integer representing the number of letters in the underlying string alphabet. For DNA and RNA, this would be 4L. For Amino Acids, this could be 20L.} \item{qualityClass}{a character string of \code{"PhredQuality"}, \code{"SolexaQuality"}, or \code{"IlluminaQuality"}.} \item{bitScale}{a numeric value to scale the quality-based substitution matrices. By default, this is 1, representing bit-scale scoring.} } \format{ The BLOSUM and PAM matrices are square symmetric matrices with integer coefficients, whose row and column names are identical and unique: each name is a single letter representing a nucleotide or an amino acid. \code{nucleotideSubstitutionMatrix} produces a substitution matrix for all IUPAC nucleic acid codes based upon match and mismatch parameters. \code{errorSubstitutionMatrices} produces a two element list of numeric square symmetric matrices, one for matches and one for mismatches. \code{qualitySubstitutionMatrices} produces the substitution matrices for Phred or Solexa quality-based reads. } \details{ The BLOSUM and PAM matrices are not unique. For example, the definition of the widely used BLOSUM62 matrix varies depending on the source, and even a given source can provide different versions of "BLOSUM62" without keeping track of the changes over time. NCBI provides many matrices here ftp://ftp.ncbi.nih.gov/blast/matrices/ but their definitions don't match those of the matrices bundled with their stand-alone BLAST software available here ftp://ftp.ncbi.nih.gov/blast/ The BLOSUM45, BLOSUM62, BLOSUM80, PAM30 and PAM70 matrices were taken from NCBI stand-alone BLAST software. The BLOSUM50, BLOSUM100, PAM40, PAM120 and PAM250 matrices were taken from ftp://ftp.ncbi.nih.gov/blast/matrices/ The quality matrices computed in \code{qualitySubstitutionMatrices} are based on the paper by Ketil Malde. Let \eqn{\epsilon_i} be the probability of an error in the base read. For \code{"Phred"} quality measures \eqn{Q} in \eqn{[0, 99]}, these error probabilities are given by \eqn{\epsilon_i = 10^{-Q/10}}. For \code{"Solexa"} quality measures \eqn{Q} in \eqn{[-5, 99]}, they are given by \eqn{\epsilon_i = 1 - 1/(1 + 10^{-Q/10})}. Assuming independence within and between base reads, the combined error probability of a mismatch when the underlying bases do match is \eqn{\epsilon_c = \epsilon_1 + \epsilon_2 - (n/(n-1)) * \epsilon_1 * \epsilon_2}, where \eqn{n} is the number of letters in the underlying alphabet. Using \eqn{\epsilon_c}, the substitution score is given by when two bases match is given by \eqn{b * \log_2(\gamma_{x,y} * (1 - \epsilon_c) * n + (1 - \gamma_{x,y}) * \epsilon_c * (n/(n-1)))}, where \eqn{b} is the bit-scaling for the scoring and \eqn{\gamma_{x,y}} is the probability that characters \eqn{x} and \eqn{y} represents the same underlying information (e.g. using IUPAC, \eqn{\gamma_{A,A} = 1} and \eqn{\gamma_{A,N} = 1/4}. In the arguments listed above \code{fuzzyMatch} represents \eqn{\gamma_{x,y}} and \code{errorProbability} represents \eqn{\epsilon_i}. } \references{ K. Malde, The effect of sequence quality on sequence alignment, Bioinformatics, Feb 23, 2008. } \author{H. Pages and P. Aboyoun} \seealso{ \code{\link{pairwiseAlignment}}, \link{PairwiseAlignedXStringSet-class}, \link{DNAString-class}, \link{AAString-class}, \link{PhredQuality-class}, \link{SolexaQuality-class}, \link{IlluminaQuality-class} } \examples{ s1 <- DNAString("ACTTCACCAGCTCCCTGGCGGTAAGTTGATCAAAGGAAACGCAAAGTTTTCAAG") s2 <- DNAString("GTTTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTTTCATC") ## Fit a global pairwise alignment using edit distance scoring pairwiseAlignment(s1, s2, substitutionMatrix = nucleotideSubstitutionMatrix(0, -1, TRUE), gapOpening = 0, gapExtension = -1) ## Examine quality-based match and mismatch bit scores for DNA/RNA ## strings in pairwiseAlignment. ## By default patternQuality and subjectQuality are PhredQuality(22L). qualityMatrices <- qualitySubstitutionMatrices() qualityMatrices["22", "22", "1"] qualityMatrices["22", "22", "0"] pairwiseAlignment(s1, s2) ## Get the substitution scores when the error probability is 0.1 subscores <- errorSubstitutionMatrices(errorProbability = 0.1) submat <- matrix(subscores[,,"0"], 4, 4) diag(submat) <- subscores[,,"1"] dimnames(submat) <- list(DNA_ALPHABET[1:4], DNA_ALPHABET[1:4]) submat pairwiseAlignment(s1, s2, substitutionMatrix = submat) ## Align two amino acid sequences with the BLOSUM62 matrix aa1 <- AAString("HXBLVYMGCHFDCXVBEHIKQZ") aa2 <- AAString("QRNYMYCFQCISGNEYKQN") pairwiseAlignment(aa1, aa2, substitutionMatrix = "BLOSUM62", gapOpening = -3, gapExtension = -1) ## See how the gap penalty influences the alignment pairwiseAlignment(aa1, aa2, substitutionMatrix = "BLOSUM62", gapOpening = -6, gapExtension = -2) ## See how the substitution matrix influences the alignment pairwiseAlignment(aa1, aa2, substitutionMatrix = "BLOSUM50", gapOpening = -3, gapExtension = -1) if (interactive()) { ## Compare our BLOSUM62 with BLOSUM62 from ftp://ftp.ncbi.nih.gov/blast/matrices/ data(BLOSUM62) BLOSUM62["Q", "Z"] file <- "ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM62" b62 <- as.matrix(read.table(file, check.names=FALSE)) b62["Q", "Z"] } } \keyword{utilities} \keyword{data} \keyword{datasets}