## Chunk 1
|
|||
library("BiocCaseStudies")
|
|||
## Chunk 2
|
|||
library("Biobase")
|
|||
## Chunk 3
|
|||
library("ALL")
|
|||
|
|||
## Chunk 5
|
|||
ALLfilt_bcrneg = nsFilter(ALL_bcrneg, var.cutoff=0.75)$eset
|
|||
|
|||
## Chunk 7
|
|||
rowIQRs = function(eSet) {
|
|||
## Chunk 8
|
|||
standardize = function(x) (x - rowMedians(x)) / rowIQRs(x)
|
|||
## Chunk 9
|
|||
eucD = dist(t(exprs(ALLfilt_bcrneg)))
|
|||
## Chunk 10
|
|||
library("RColorBrewer")
|
|||
|
|||
|
|||
## Chunk 13
|
|||
closest.top("03002", eucM, 1)
|
|||
|
|||
## Chunk 15
|
|||
Negs = which(ALLfilt_bcrneg$mol.biol == "NEG")
|
|||
|
|||
## Chunk 17
|
|||
Traintt = rowttests(ALLfilt_bcrneg[, TrainInd], "mol.biol")
|
|||
|
|||
## Chunk 19
|
|||
BNf = ALLfilt_bcrneg[fNtt,]
|
|||
|
|||
## Chunk 21
|
|||
BNx = ALLfilt_bcrneg[1:1000,]
|
|||
## Chunk 22
|
|||
knnXval1 = MLearn(mol.biol~., data=BNx, knn.cvI(k=1, l=0),
|
|||
## Chunk 23
|
|||
## knnXval1 = MLearn(mol.biol~., data=BNx, knnI(k=1, l=0),
|
|||
|
|||
## Chunk 25
|
|||
confuMat(knnXval1)
|
|||
## Chunk 26
|
|||
lk3f1 = MLearn(mol.biol~., data=BNx, knnI(k=1),
|
|||
|
|||
|
|||
|
|||
|
|||
## Chunk 31
|
|||
library("randomForest")
|
|||
## Chunk 32
|
|||
rf2 = MLearn( mol.biol~., data=ALLfilt_bcrneg,
|
|||
## Chunk 33
|
|||
trainY = ALLfilt_bcrneg$mol.biol[TrainInd]
|
|||
## Chunk 34
|
|||
confuMat(rf2, "train")
|
|||
|
|||
|
|||
|
|||
## Chunk 38
|
|||
opar = par(no.readonly=TRUE, mar=c(7,5,4,2))
|
|||
## Chunk 39
|
|||
par(las=2, mar=c(7,5,4,2))
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
## Chunk 46
|
|||
Bcell = grep("^B", ALL$BT)
|
|||
## Chunk 47
|
|||
s1 = table(ALL3gf$mol.biol)
|
|||
|