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To facilitate scalable profiling of single cells, we developed split-pool ligation-based
transcriptome sequencing (SPLiT-seq), a single-cell RNA-seq (scRNA-seq) method
that labels the cellular origin of RNA through combinatorial barcoding. SPLiT-seq
is compatible with fixed cells or nuclei, allows efficient sample multiplexing, and requires
no customized equipment. We used SPLiT-seq to analyze 156,049 single-nucleus
transcriptomes from postnatal day 2 and 11 mouse brains and spinal cords. More than
100 cell types were identified, with gene expression patterns corresponding to cellular
function, regional specificity, and stage of differentiation. Pseudotime analysis revealed
transcriptional programs driving four developmental lineages, providing a snapshot of
early postnatal development in the murine central nervous system. SPLiT-seq provides
a path toward comprehensive single-cell transcriptomic analysis of other similarly
complex multicellular systems.

M
ore than 300 years have passed since
van Leeuwenhoek first described living
cells, yet we still do not have a complete
catalog of cell types or their functions.
Recently, transcriptomic profiling of in-

dividual cells has emerged as an essential tool
for characterizing cellular diversity (1–3). Single-
cell RNA-sequencing (scRNA-seq) methods have
profiled tens of thousands of individual cells
(4–6), revealing new insights about cell types
within both healthy (7–14) and diseased tissues
(15–18). Unfortunately, since these methods re-
quire cell sorters, custom microfluidics, or micro-
wells, throughput is still limited and experiments
are costly. We introduce split-pool ligation-based
transcriptome sequencing (SPLiT-seq), a low-cost,
scRNA-seq method that enables transcriptional
profiling of hundreds of thousands of fixed cells
or nuclei in a single experiment. SPLiT-seq does
not require partitioning single cells into indi-
vidual compartments (droplets, microwells, or
wells) but relies on the cells themselves as com-
partments. The entire workflow before sequenc-
ing consists just of pipetting steps, and no
complex instruments are needed.
In SPLiT-seq, individual transcriptomes are

uniquely labeled by passing a suspension of
formaldehyde-fixed cells or nuclei through four

rounds of combinatorial barcoding. In the first
round of barcoding, cells are distributed into a
96-well plate, and cDNA is generated with an
in-cell reverse transcription (RT) reaction using
well-specific barcoded primers. Each well can
contain a different biological sample, thereby
enabling multiplexing of up to 96 samples in
a single experiment. After this step, cells from
all wells are pooled and redistributed into a new
96-well plate, where an in-cell ligation reaction
appends a second well-specific barcode to the
cDNA. The third-round barcode, which also con-
tains a unique molecular identifier (UMI), is then
appended with another round of pooling, splitt-
ing, and ligation. After three rounds of barcoding,
the cells are pooled and split into sublibraries,
and sequencing barcodes are introduced by poly-
merase chain reaction (PCR). This final step pro-
vides a fourth barcode, while also making it
possible to sequence different numbers of cells
in each sublibrary. After sequencing, each tran-
scriptome is assembled by combining reads
containing the same four-barcode combination
(Fig. 1A and fig. S1A).
Four rounds of combinatorial barcoding can

yield 21,233,664 barcode combinations (three
rounds of barcoding in 96-well plates followed
by a fourth round with 24 PCR reactions), enough
to uniquely label over 1 million cells. Even larger
numbers of barcode combinations can be achieved
by performing experiments in 384-well plates
or through additional rounds of barcoding (fig.
S1B). In addition, by performing the first step in a
384-well plate, up to 384 different biological sam-
ples could be combined in a single experiment.

SPLiT-seq validation

To test SPLiT-seq’s ability to generate uniquely
barcoded cells (UBCs), we performed a species-

mixing experiment. We mixed cells from one
mouse and two human cell lines (NIH/3T3,
HEK293, and Hela-S3), fixed them, and used
SPLiT-seq to generate a scRNA-seq library with
1758 UBCs. The library was sequenced, and reads
were aligned to a combined mouse-human ge-
nome. Nearly all (99.9%) of the UBCs were un-
ambiguously assigned to a single species (>90%
of reads aligned to a single genome), with the
remaining 0.1% of UBCs representing barcode
collisions between mouse and human cells (Fig.
1B). At saturating read coverage (>500,000 reads
per cell), we identified a median of 15,365 UMIs
and 5498 genes per human cell and 12,243 UMIs
and 4497 genes per mouse cell. The species pu-
rity in both human and mouse UBCs was high:
99.6% of reads in human UBCs and 99.0% of
reads in mouse UBCs aligned to their respective
genomes. We also performed single-nucleus
RNA-seq (snRNA-seq) experiments using SPLiT-
seq with freshly prepared nuclei, as well as nu-
clei and cells that had been preserved at –80°C
for 2 weeks. In all samples, we detected similar
numbers of transcripts and genes per cell (Fig. 1C,
fig. S2, and table S1). Gene expression was highly
correlated between preserved and freshly pre-
pared cells (Fig. 1D and fig. S2) (Pearson r, 0.987),
as well as between cells and nuclei (fig. S2)
(Pearson r, 0.952). We also examined gene and
UMI detection at different sequencing depths
and found that the sensitivity of SPLiT-seq is
comparable to droplet-based scRNA-seq methods
(fig. S3).

Single-nuclei RNA-seq of developing
mouse brain and spinal cord

We used SPLiT-seq to profile nuclei from the
developing brain and spinal cord of postnatal
day 2 and 11 (P2 and P11) mice. The first round
of barcoding assigned identifiers for the P2 brain,
P2 spinal cord, P11 brain, and P11 spinal cord
samples (Fig. 2A and fig. S4). In total, four rounds
of barcoding (48 × 96 × 96 × 14) generatedmore
than 6 million distinct barcode combinations,
making it possible to process hundreds of thou-
sands of nuclei in a single experiment with min-
imal barcode collisions (2.5% expected collisions
for 150,000 nuclei).
To determine how many transcripts SPLiT-

seq detects within nuclei from the central ner-
vous system, we performed deep sequencing on
a sublibrary containing only 131 nuclei. We de-
tected 4943 UMIs and 2055 genes per nucleus
(UMI duplication, 95%). We then sequenced the
rest of the library at lower depth, resulting in a
median of 677 genes and 1022 UMIs per nucleus
(UMI duplication, 58%) (table S2). Low-quality
transcriptomes were removed from analysis (19),
yielding 156,049 single-nucleus transcriptomes
(74,862 P2 brain; 7028 P2 spinal cord; 58,573
P11 brain; 15,586 P11 spinal cord).
Unsupervised clustering grouped transcrip-

tomes into 73 distinct clusters (19) (tables S3
to S5), which were visualized by t-distributed
stochastic neighbor embedding (t-SNE) (Fig. 2A).
Each of these 73 clusters was assigned to a cell
class on the basis of expression of established

RESEARCH

Rosenberg et al., Science 360, 176–182 (2018) 13 April 2018 1 of 7

1Department of Electrical Engineering, University of Washington,
Seattle, WA, USA. 2Department of Bioengineering, University of
Washington, Seattle, WA, USA. 3Allen Institute for Brain Science,
Seattle, WA, USA. 4Molecular Engineering and Sciences Institute,
University of Washington, Seattle, WA, USA. 5Institute for Stem
Cell and Regenerative Medicine, Seattle, WA, USA. 6Paul G. Allen
School of Computer Science and Engineering, University of
Washington, Seattle, WA, USA.
*These authors contributed equally to this work.
†Corresponding author. Email: alex.b.rosenberg@gmail.com
(A.B.R.); gseelig@uw.edu (G.S.)

on July 15, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


marker genes (Fig. 2B). Neurons accounted for
83% of the profiled transcriptomes (54 clusters),
with most clusters expressing Meg3.
The 27,096 non-neuronal transcriptomes

spanned 19 different clusters, each assigned to a
specific cell type. Four astrocyte types (Fig. 2C)
accounted for 50% of all non-neuronal nuclei
(n = 13,481). Oligodendrocytes (six types, n =
4294) and oligodendrocyte precursor cells (OPC)
(one type, n = 5793) formed the second most
abundant population. We further identified two
vascular and leptomeningeal cell (VLMC) types
(fig. S5A), endothelial cells, smooth muscle cells
(fig. S5B), microglia, macrophages (fig. S5C)
(20, 21), ependymal cells, and olfactory ensheath-
ing cells (OEC).
Previous work has observed that t-SNE can

order cells in two-dimensional space according
to stages of differentiation (9). Moving through
t-SNE space along the path of differentiation
can then be viewed as moving through “pseu-
dotime” (22). As oligogenesis spans the first
two postnatal weeks of murine development
(23), we asked whether the oligodendrocyte and
OPC clusters might reflect a continuous devel-
opmental trajectory. When we examined the
oligodendrocyte clusters, we found that they
formed an overlapping elongated shape in the
t-SNE visualization. OPCs and oligodendro-
cytes from the P2 mouse were enriched at one
end of the structure, whereas oligodendro-
cytes from the P11 mouse were enriched at the
opposite end (fig. S6), indicative of a lineage
(19, 22).
We then performed a more thorough anal-

ysis of this putative lineage. To ensure that our
ordering of oligodendrocytes was determined
exclusively by their relationship to other oligoden-
drocytes, rather than all cells, we re-embedded
only transcriptomes within these seven clusters
with t-SNE (Fig. 2D and fig. S7A). We calculated
the moving average of gene expression in the re-
sulting pseudotime ordering (Fig. 2E and fig. S8).
Analysis of these expression patterns confirmed
that proliferating OPCs segregated to one end of
the t-SNE, whereasmature oligodendrocytes seg-
regated to the opposite end (fig. S7B). We also
detected previously reported intermediate stages
of oligodendrocyte development, with the order
of gene expression across pseudotime nearly iden-
tical to the one defined previously (9) (fig. S7C)
(Spearman r, 0.94). When analyzing spinal cord–
and brain-derived cells separately, we found
more mature oligodendrocytes in the spinal cord
than in the brain (fig. S7D), indicating that oli-
godendrocyte maturation occurs earlier in the
spinal cord.

Neuronal cell types

Using known gene markers, we were able to as-
sign most neuronal clusters to specific cell types
(19). Although some clusters corresponded to
abundant cell types, such as cerebellar granule
cells (CGCs), others mapped to rare and often
less-characterized cell types, such as mitral/tufted
cells. Previously characterized regional markers
were used to assign the majority of clusters to a

specific region of the brain (24) (Fig. 3A). Re-
gional assignments were validated with RNA
in situ hybridization (ISH) from the Allen In-
stitute’s Developing Mouse Brain Atlas (Allen
DMBA) (25). Specifically, we generated composite
ISH maps by averaging across the five most
highly enriched genes from each of our clusters
(tables S6 and S7). For clusters primarily con-
taining P2 or P11 nuclei, we used the P4 or P14
atlases, respectively. The resulting composite maps
confirmed the high regional specificity of most
types (Fig. 3B and figs. S9 and S10). Cortical
pyramidal neuronal types could be further as-
signed to specific layers using marker genes
(Fig. 3C) (7, 8).

Granule cell fate in the hippocampus
In the hippocampus, immature granule cells orig-
inating in the dentate gyrus give rise not only to
mature granule cells but also to pyramidal neu-
rons (26). This process is one of two instances of
neurogenesis that continues into adulthood (27),
but little is known about the underlying transcrip-
tional program. We determined that three neu-
ronal cell types from the hippocampus likely
constituted a developmental trajectory (19).
Analysis of only these transcriptomes with t-SNE
revealed a clear branching structure (Fig. 3D and
fig. S11A). The transcription factor Prox1, sus-
pected to be necessary for granule cell identity
(28), was exclusively expressed in one branch,
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Fig. 1. Overview of SPLiT-seq. (A) Labeling transcriptomes with split-pool barcoding. In each
split-pool round, fixed cells or nuclei are randomly distributed into wells, and transcripts are
labeled with well-specific barcodes. Barcoded RT primers are used in the first round. Second- and
third-round barcodes are appended to cDNA through ligation. A fourth barcode is added to cDNA
molecules by PCR during sequencing library preparation. The bottom schematic shows the final
barcoded cDNA molecule. (B) Species-mixing experiment with a library prepared from 1758 whole
cells. Human UBCs are blue, mouse UBCs are red, and mixed-species UBCs are gray. The estimated
barcode collision rate is 0.2%, whereas species purity is >99%. (C) UMI counts from mixing
experiments performed with fresh and frozen (stored at –80°C for 2 weeks) cells and nuclei.
Median human UMI counts for fresh cells: 15,365; frozen cells: 15,078; nuclei: 12,113; frozen nuclei:
13,636. (D) Measured gene expression by SPLiT-seq is highly correlated between frozen cells and
cells processed immediately (Pearson r, 0.987). Frozen and fresh cells were processed in two
different SPLiT-seq experiments.
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whereas genes known to be specific to CA3 py-
ramidal neurons such as Spock1 (29) were ex-
pressed exclusively in the other branch. Markers
of dividing neuronal progenitors were expressed
before the branching point, and genes in the Slit-
Robo signaling pathway were differentially ex-
pressed between the two lineages (fig. S11B). We
used these data to identify specific temporal dy-
namics of transcription factors across the two
lineages, with Meis2 as a candidate marker of
early pyramidal cell differentiation (Fig. 3E and
fig. S12).

Profiling cells in the
developing cerebellum

The cerebellum accounts for only 9% of the
brain mass in adult mice but contains nearly

85% of all neurons (30). Despite the wide range
of functions performed by the cerebellum, many
of the gene expression programs driving devel-
opment of cerebellar cell types remain unknown.
We identified the four main cerebellar neuronal
types (Fig. 4A): Purkinje cells, Golgi cells, stellate/
basket cells, and CGCs. Two types of Purkinje
cells (Fig. 4B) were segregated primarily by age
(P2 versus P11) and did not form a continuous tra-
jectory in t-SNE but rather two clearly segregated
clusters. The absence of cells at intermediate stages
of maturation suggests that Purkinje cell develop-
mentmay bemore synchronous than other proces-
ses of neurogenesis captured by our data set.
CGCs, the most numerous type of neuron in

the brain (31), drive the postnatal foliation of the
cerebellar cortex by migrating from the external

granule layer (EGL) through the molecular layer
(ML) and the Purkinje cell layer (PcL) to the in-
ternal granule layer (IGL) (32, 33). We created a
pseudotime ordering of 15,360 CGCs (Fig. 4C and
fig. S13) and measured gene expression across
this lineage. We defined genes with specific ex-
pression at different points in pseudotime (fig. S14)
and then used RNA ISH to map these genes to
layers of the developing cerebellar cortex. Genes
ordered from early to late in pseudotime were
progressively expressed from outer to inner lay-
ers, consistent with the known direction of CGC
migration (Fig. 4D). Our analysis revealed pre-
viously unknown pseudotime and layer-specific
gene expression patterns within pathways related
to axonal development and neuronal migration
(fig. S15).
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Fig. 2. Single-cell transcriptome landscape of postnatal brain and
spinal cord development by SPLiT-seq. (A) More than 150,000 nuclei
from P2 and P11 mouse brains and spinal cords were profiled in a single
experiment employing more than 6 million barcode combinations.
Transcriptomes were clustered and then visualized using t-SNE. Cells
are colored according to cell type. Each cluster was downsampled to
1000 cells for visualization. (B) A total of 73 distinct clusters were
assigned to nine cell classes based on expression of established markers.

The violin plots show marker gene expression in each cluster.
(C) Astrocyte clusters are highlighted in red in the t-SNE. The violin plots
show markers that are differentially expressed between astrocyte
subtypes. (D) Seven OPC and oligodendrocyte clusters (containing 10,087
nuclei) colocalized in the original t-SNE (highlighted in red), forming a
lineage. Cells from these clusters were re-embedded with t-SNE.
(E) The heat map shows genes expressed differentially across pseudotime
in the oligodendrocyte lineage.
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Origins of cerebellar
inhibitory interneurons
The question of whether all cerebellar inhibitory
interneurons arise from the same progenitor pop-
ulation has been a point of contention (34). Early

hypotheses proposed that stellate/basket cells orig-
inated from precursors in the EGL, whereas Golgi
cell precursors resided in the ventricular epithe-
lium (35). Later evidence indicated that these two
interneurons shared a common precursor in the

cerebellar white matter (36, 37). However, the
molecular profile of the inhibitory neuron lineage
in the cerebellum remains largely unknown.
We found a cerebellar inhibitory interneuron

lineage (1517 cells) (Fig. 4E and fig. S16A) with a
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Fig. 3. Neuronal clusters exhibit regional specificity. (A) Marker
gene expression was used to map neuronal clusters to specific brain
regions. (B) Sagittal composite RNA ISH maps for nine representative
clusters from distinct areas. For each cell type, we averaged ISH
intensities from the Allen DMBA across the top five differentially
expressed genes. (C) Types of pyramidal neurons in the cortex display
layer-specific enrichments according to marker genes; cortical pyramidal
neurons are highlighted in red in the t-SNE. Expression of example

marker genes in pyramidal clusters is shown in the middle, and
corresponding available RNA ISH results are on the right.
(D) Three clusters constitute a developmental trajectory in the
hippocampus. Re-embedding these clusters highlights the branching
of the two differentiation trajectories in pseudotime. (E) Expression of
differentiation marker genes is overlaid on the t-SNE. RNA ISH maps
(Allen DMBA) show the regional specificity of granule cell and pyramidal
neuron markers.
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shared progenitor branching into either Golgi or
stellate/basket cells (fig. S17). This lineage includes
a known precursor cell type expressing Pax2 (36)
but also a previously unknown, earlier precursor
expressing Pax3 (Fig. 4F). RNA ISH analysis
suggests that this Pax3+ precursor is located deep
within the cerebellar white matter. Moreover, we
found that stellate/basket cells expressed genes
specific to the molecular layer, whereas Golgi
cells expressed genes specific to the granule cell
layer (Fig. 4F and fig. S18). The distribution of P2
and P11 nuclei within the lineage clearly demon-
strated that thematuration of Golgi cells waswell
under way by P2 and complete by P11 (fig. S16B).
In contrast, stellate/basket cells had not begun
to differentiate at P2 and were still not fully
mature by P11. These results indicate that the
same molecularly defined precursor gives rise
to two distinct interneurons at different stages
of development.

Cell types in the developing spinal cord
The original clustering was dominated by cells
in the brain, and many spinal cord cells did not
segregate into well-defined clusters (fig. S19). To
resolve more cell types in the spinal cord, we
selected all the nuclei originating from the spinal
cord and reclustered them (19), resulting in 44
clusters: 14 non-neuronal types (12 of which were
also found in the brain) and 30 neuronal types
(Fig. 5A and tables S8 to S10). We identified 11
different types of g-aminobutyric acid–releasing
(GABAergic) neurons, of which several were also
glycinergic (Fig. 5B). One GABAergic type was
identified as cerebrospinal fluid–contacting
neurons (CSF-cNs) (38), with the other 10 types
corresponding to inhibitory interneurons. Gluta-
matergic interneurons accounted for 15 additional
types. We also identified two clusters of choliner-
gic motor neuron types (alpha and gamma) (39).
To date, known markers exist only for gamma

motor neurons (e.g., Esrrg) (40); however, we
identified specific markers for both alpha and
gamma neurons (Fig. 5C).
To infer the spatial origin of neuronal types

in the spinal cord, we identified the 10 most
enriched genes in each type according to our
snRNA-seq data and created composite ISHmaps
based on the Allen Mouse Spinal Cord Atlas (41)
(Fig. 5D and fig. S20). Some interneuron subtypes
appeared to originate primarily from laminae 1 to
3, with others originating from laminae 4 to 6.
We found both inhibitory and excitatory neurons
in each region. Motor neurons expressed genes
found in laminae 9, whereas CSF-cNs were the
only neuronal type expressing genes found in
the central canal. These data allowed us to cre-
ate an atlas of gene expression in the early spinal
cord, providing a rich resource for further under-
standing development of the central nervous
system.
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Fig. 4. Neuronal differentiation trajectories in the cerebellum
revealed by SPLiT-seq. (A) Major cell types and their locations in the
cerebellum. (B) Two types of Purkinje cells with distinct gene expression
programs were identified. Early Purkinje cells are primarily found in the P2
brain and late Purkinje cells in the P11 brain. (C) t-SNE re-embedding of
15,360 nuclei suggests a pseudotime ordering from proliferating, to
migrating, to mature CGCs. (D) Expression of marker genes is overlaid on
the t-SNE, and the corresponding RNA ISH from Allen DMBA is shown

below. Marker genes associated with different layers of the cerebellum are
expressed at different points in pseudotime. Gene expression order is
consistent with ordering of the physical layers. RNA ISH maps confirm
regional specificity of marker genes. (E) t-SNE re-embedding of 1890
nuclei reveals a branching differentiation trajectory. Progenitors can either
become Golgi cells or stellate/basket cells. (F) Markers for progenitors
and mature cell types are expressed at different points in pseudotime and
have layer specificity.
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Discussion
In this work, we profiled hundreds of thousands
of cells using only basic laboratory equipment
with a library preparation cost of ~$0.01 per cell
(fig. S21 and table S11). In our analysis of more
than 150,000 single-nucleus transcriptomes from
two early postnatal stages, we identified 69 types
of cells in the brain and 44 types in the spinal
cord. We defined many new molecular markers
for specific cell types and explored gene expres-
sion in four different developmental lineages.
SPLiT-seq’s compatibility with fixed cells and

fixed nuclei overcomes challenges faced by other
scRNA-seq methods. Fixation can reduce pertur-
bations to endogenous gene expression during cell
handling (42) and makes it possible to store cells
for future experiments.Moreover, the use of nuclei
bypasses the need to obtain intact single cells,
which can be challenging for many complex tis-

sues. SPLiT-seq’s compatibility with formaldehyde-
fixed nuclei suggests that it may be used to profile
singlenuclei fromformalin-fixed,paraffin-embedded
tissue (43).
SPLiT-seq enables flexible and scalable cell and

sample multiplexing. The use of the first-round
barcode as a sample identifiermakes it possible to
profile a large number and variety of samples in
parallel, thusminimizing batch effects. As the num-
ber of unique barcodes grows exponentially with
the number of barcoding rounds, larger numbers
of cells than presented here could be processed
by adding a fifth barcoding round or by switching
to a 384-well plate format. Although for such large
cell numbers, sequencing cost may currently be
forbidding, it is easy to imagine applications, such
as targeted sequencingof genepanels,whichwould
even now benefit from very large cell numbers
and only require shallow sequencing depth.

Our hope is that the increased scale and ac-
cessibility provided by the low cost and minimal
equipment requirements of SPLiT-seq will further
accelerate the widespread adoption of scRNA-seq.
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