
beachmat: a relaxing C++ API for interacting
with R matrix types

Plus some words about the 1.3 million data set

Aaron Lun

26 July 2017

Bioconductor Developer Day

Boston

The variety of matrix flavours

Lots of matrix types in R:

I good old matrix

I Matrix classes:
I dgeMatrix, dense
I dgCMatrix, column-sparse compressed

I Bioconductor classes:
I RleMatrix, run-length encoding
I HDF5Matrix, file-backed on HDF5
I DelayedMatrix, delayed operations wrapper

Each class has its own advantages (memory/simplicity tradeoff).

Class instances are more-or-less interchangeable in R code,
provided that [,, dims, rbind, etc. are supported.

What? C++?

R packages can contain compiled code, usually Fortran or C/C++.

Why? Because it can be faster than pure R.

I Avoid re-interpretation of code in loops

I Streamline memory management

I Access useful Fortran/C/C++ libraries (e.g., LAPACK)

Order of ease of use: Fortran < C < C++ (via Rcpp)

Dealing with matrix varieties in C++

Simplest use of matrices are for data access:

I rows = genes, columns = samples (cells in scRNA-seq)

I rows/columns = genomic regions (Hi-C)

S4 methods for access are not supported natively in compiled code.

Need to know exact implementation details of each representation:

I dgCMatrix: what are i, p, x?

I HDF5Matrix: need to interact with the HDF5 library

I dspMatrix: upper/lower triangular storage only

Becomes a pain to support many possible matrix types.

Introducing the beachmat API

Provides a common C++ interface for row/column data access to

I matrix (obviously)

I Matrix classes, inc. dgCMatrix, dgeMatrix, dspMatrix

I DelayedMatrix, HDF5Matrix, RleMatrix

Simple to use in the C++ code in your package:

1. Link to beachmat (now on BioC)

2. Incoming SEXP’s used to make a * matrix pointer

3. Call get row, get col on the pointer

... and now your C++ code supports all matrix types.

Or in other words

matrix

dgCMatrix

HDF5Matrix

...

RObject

numeric_
simple_matrix

numeric_
Csparse_matrix

numeric_
HDF5_matrix

*numeric_
 matrix

...
R Rcpp beachmat user code

#include "beachmat/numeric_matrix.h"

SEXP test_sparse_numeric(SEXP in, SEXP rorder) {
 BEGIN_RCPP
 auto ptr=beachmat::create_numeric_matrix(in);
 const int& nrows=ptr->get_nrow();
 const int& ncols=ptr->get_ncol();

 Rcpp::IntegerVector ro(rorder);
 if (ro.size()!=nrows) {
 throw std::runtime_error("incorrect length");
 }
 Rcpp::NumericMatrix output(nrows, ncols);

 // By row, in the specified order.
 Rcpp::NumericVector target(ncols);
 for (int r=0; r<nrows; ++r) {
 int currow=ro[r]-1;
 ptr->get_row(currow, target.begin());
 for (int c=0; c<ncols; ++c) {
 output[c * nrows + r]=target[c];
 }
 }

 return output;
 END_RCPP
}

SEXP test_sparse_numeric_slice(SEXP in, SEXP Inx) {
 BEGIN_RCPP
 auto ptr=beachmat::create_numeric_matrix(in);
 const int& nrows=ptr->get_nrow();

 Rcpp::IntegerMatrix inx(Inx);
 if (inx.nrow()!=nrows) {
 throw std::runtime_error("incorrect length");
 }
 Rcpp::List output(nrows);

 // By row, using the requested column indices.
 for (int r=0; r<nrows; ++r) {
 int start=inx(r, 0)-1, end=inx(r, 1);
 Rcpp::NumericVector target(end-start);
 ptr->get_row(r, target.begin(), start, end);
 output[r]=target;
 }

 return output;
 END_RCPP
}

I beachmat is built on top of a Rcpp base

I also, “users” here are really other package developers

What beachmat does and does not do

What it does do:

I access data from rows/columns

I write data to rows/columns

Probably the most common operations in package code.

What it doesn’t do:

I combine matrices a la rbind, cbind

I matrix operations like multiplication

I matrix factorizations

Hard to beat BLAS and LAPACK for the last two.

Analyzing 1.3 million cells with Bioconductor

1.3 million neuron data set from 10X:

I about 28000 genes; 145 GB as a simple matrix

I 7% non-zero; est. 20 GB as a dgCMatrix1

I provided as a 3GB compressed HDF5 file2

Analysis strategy:

1. Use TENxGenomics package (Martin Morgan) to read file

2. Convert TENxMatrix into HDF5Matrix

3. Use scran with C++ functions based on beachmat to analyze

Running on a desktop with 8GB ram, Core i5 processor.

1though this doesn’t work due to overflow
2stored in CSC format

Cell cycle assignment with cyclone

I 24 hours on 3 cores (fully parallelizable)

I most neurons in G1, which is probably sensible

Normalization by deconvolution

I 5 hours on 1 core, using chunks of 2000-3000 cells

I + 3 hours to write to normalized expression values

I mostly correlated with library size (+ some outliers)

Detection of highly variable genes

I 8 hours

I blocked on library of origin for each cell

I lots of brain-related stuff

Dimensionality reduction with PCA

Used a subsetting strategy (5 hours):

I randomly sampled 10000 cells and did PCA

I projected all other cells to the first two PCs

Doesn’t actually use beachmat here.

Acknowledgements

Hervé Pagès (HDF5Array, DelayedArray)
Mike Smith (Rhdf5lib, Windows)
Everyone in the single-cell big data working group:

I Martin Morgan

I Davide Risso, Peter Hickey, Andrew McDavid

I Raphael Gottardo, Mike Jiang

I John Readey

I and others...

Accessing simple matrix objects

Stored column-major in a one-dimensional array

I entry (r , c) is element r + cNc for 0-based indices

I Easy and fast to access and write

I Stored wholly in memory, NrNc elements

beachmat requires 20-50% more time than native Rcpp

I at the same speed for read-only column acccess

I probably okay, as data access usually isn’t the bottleneck.

An important aside

Each access copies the row/column data from the matrix to a new
Rcpp::Vector, much like when you subset the matrix in R.

This is necessary for consistency across matrix types, as the data in
the underlying representation may not be contiguous.

Accessing sparse dgCMatrix objects

Stored in column-sparse compressed format:

5
.
.
.
2
.

.
1
.
9
.
.

.

.

.

.
4
.

.

.
8
2
.
5

.
6
.
.
.
.

0

1

2

3

4

5

6

7

8

5 2 1 9 4 8 2 5 6
0 8

0 4 1 3 4 2 3 5 1

1 2 3 4 5 6 7

0 81 2 3 4 5 6 7

0
1
2
3
4
5

R
ow

 in
d

ex
Column index

0 1 2 3 4

0 2 4 5 8 9
0 1 2 3 4

x

i

p

I Reduced memory for sparse data (< 66% non-zero)

I Generally slower access than simple matrices

Accessing sparse dgCMatrix objects (cont)

Column access with beachmat slower than RcppArmadillo

I Due to need for copying

I still pretty fast (20% more time than equivalent matrix)

Row access with beachmat caches the indices

I avoid repeated binary searches for consecutive access

I about 4× faster than a näıve implementation

I orders of magnitude faster than RcppArmadillo (?)

Accessing file-backed HDF5Matrix objects

Class developed by Hervé Pagès in the HDF5Array package:

I Data stored on disk as a HDF5 file, with a stub object in R

I very memory efficient: 3 kbp size, regardless of dimensions

I much slower (20-40×) as disk reads required for access

I need to consider file layout for optimal performance

beachmat uses the HDF5 C++ API (Rhdf5lib, Mike Smith)
↪→ optimize chunk cache for consecutive row/column access

Other stuff

Also supports RleMatrix, *spMatrix, *geMatrix classes

I DelayedMatrix instances are implicitly realized

I easily extensible to more classes

Limited support for matrix output:

I matrix, dgCMatrix, HDF5Matrix

I can dynamically choose output type based on input type.

