
Importing, Annotating and Filtering Variants
with Bioconductor

June 18, 2014

Contents

1 Introduction 2

2 Dataset 2

3 Importing variants from VCF 3
3.1 VCF: Variant Call Format . 3
3.2 Previewing a VCF file . 4

3.2.1 Exercises . 6
3.3 VCF import . 6

3.3.1 Exercises . 8

4 Filtering and reducing VCF data 8
4.1 Manipulating a VCF object 8

4.1.1 Exercises . 12
4.2 Filtering a VCF file . 13

4.2.1 Exercises . 14

5 Diagnosing variants 14
5.1 QC of variant frequency and coverage 14
5.2 Applying included filters . 16

5.2.1 Exercises . 18
5.3 Indel proximity . 18
5.4 Homopolymer overlap . 19
5.5 Self-chain scores . 21

5.5.1 Exercises . 21

1

6 Interpreting variants 21
6.1 Genomic context . 21

6.1.1 Exercises . 22
6.2 Coding consequences . 22

6.2.1 Exercises . 23
6.3 Genetic disorders . 23

7 Comparing variant sets 24
7.1 Exercise: Loading the Broad/GATK callset 24
7.2 Intersecting variant sets . 25

7.2.1 Exercises . 26
7.3 Manipulating gVCF runs . 26

7.3.1 Exercises . 27

1 Introduction

Calling variants from high-throughput sequencing data remains a challenge.
There are multiple sources of error, including sample prep, sequencing and,
perhaps most importantly, alignment. We need to generate diagnostics and
remove or flag suspect variants. Once we trust a variant set, the problems
shift to interpretation, where the workflow depends on the particulars of the
experiment and its driving hypotheses. Often, we are interested in functional
consequences and disease associations.

Both variant filtering and interpretation rely on annotation of the vari-
ants with information such as the genomic context and whether the variant
represents a change in a protein. Exploratory analysis of these annotations
may suggest additional filtering criteria, or at least guide our interpretation
of the data.

We will demonstrate variant annotation and filtering using the Biocon-
ductor VariantAnnotation and VariantFiltering packages, along with an en-
semble of supporting packages.

2 Dataset

To demonstrate the variant annotation features in Bioconductor, we will an-
alyze the genotypes of the human NA12878 cell line, the mother of the CEU
HapMap trio. It seems that NA12878 has been sequenced and genotyped by
more organizations than any other individual. Our analysis will focus on the
variants published by the Illumina Platinum Genomes project. These data

2

were aligned with BWA and genotyped with GATK. For practical reasons,
the data have been subset to chr20.

3 Importing variants from VCF

3.1 VCF: Variant Call Format

The Variant Call Format (VCF) is the standard file format for storing variant
calls. It is a complex and flexible format, one applicable to a large number
of use cases but convenient for none. Every VCF file consists of two parts:
a header describing the format and provenance of the file, and the actual
variant records. Each variant record pertains to one or more alternate alle-
les at a particular position in the genome. Each alternate allele might be a
single or multi-base substitution, a short indel or a complex structural re-
arrangement. The record contains information at four different levels: the
position, a particular alternate allele, a particular sample, and a particular
combination of alternate allele and sample. This information will usually
but not necessarily contain the genotype (wildtype, het, or hom) and some
indicator of confidence in the genotype.

At a lower level, each VCF record consists of the following components:

CHROM The chromosome on which the variant is located,

POS The variant (start) position on CHROM,

ID A string identifier, such as the dbSNP ID,

REF The reference allele,

ALT The alternate allele,

QUAL Some notion of quality for entire record,

FILTER A list of filters that the variant failed to pass,

INFO A list of arbitrary fields describing the record or a specific alt allele,

GENO A set of columns, one per sample, each a list of sample-specific fields,
and each field may itself be a list, perhaps with one value per alt.

3

3.2 Previewing a VCF file

To begin, we obtain the path to the demonstration VCF file:

library(CSAMA2014RangesAnnotationLab)
vcf.file <- NA12878_pg.chr20.vcf.bgz

The VariantAnnotation package in Bioconductor provides facilities for
importing VCF data into R. Whenever working with a new VCF file, it
is a good idea to explore its header, which describes the contents of the
file. This is useful for knowing what to expect, and it allows us to optimize
import by restricting the operation to the components of interest (see the
next section).

header <- scanVcfHeader(vcf.file)
header

class: VCFHeader
samples(1): NA12878
meta(7): fileformat ApplyRecalibration ... source fileDate
fixed(1): FILTER
info(22): AC AF ... culprit set
geno(8): GT GQX ... PL VF

The above output is how the loaded VCFHeader object displays itself
when printed at the R console. By convention, many objects in the Bio-
conductor sequence analysis infrastructure print a single line per component
of the data structure, and line label indicates the name of the accessor for
retrieving that component. For example, entering

samples(header)

[1] "NA12878"

returns the sample names, as in the previous output.
Our VCF file contains information on one sample: NA12878, the mother

in the CEU trio. Here are the other components described in the header:

meta Arbitrary metadata values at the file scope,

fixed Essentially a list of filter descriptions,

info Descriptions of the per record/alt fields,

4

geno Descriptions of sample-level fields.

The most important information is usually the sample-specific values,
which typically include the genotype, as in this case:

geno(header)

DataFrame with 8 rows and 3 columns
Number Type

<character> <character>
GT 1 String
GQX 1 Integer
AD . Integer
DP 1 Integer
GQ 1 Float
MQ 1 Integer
PL G Integer
VF 1 Float
Description
<character>
GT Genotype
GQX Minimum of {Genotype quality assuming variant, non-variant}
AD Allelic depths for the ref and alt alleles in the order listed
DP Approximate read depth (reads with MQ=255 or with bad mates are filtered)
GQ Genotype Quality
MQ RMS Mapping Quality
PL Normalized, Phred-scaled likelihoods for genotypes...
VF Variant Frequency, the ratio of the sum of the called variant depth...

We also notice something interesting in the INFO header:

info(header)["END",]

DataFrame with 1 row and 3 columns
Number Type Description

<character> <character> <character>
END 1 Integer End position of the region...

The presence of the END INFO field indicates that we are actually dealing
with a special type of VCF called a gVCF, where "g" stands for "genomic";
more later.

5

3.2.1 Exercises

1. By convention, which accessor would you use to retrieve the meta com-
ponent of the VCFHeader object?

2. What is the meaning of the AD and DP fields in the geno() component?

3.3 VCF import

Now that we understand the contents of the file, we can load the VCF data
into R using readVcf():

vcf <- readVcf(vcf.file, genome="hg19")

We need to pass a genome identifier as the genome argument for the sake of
tracking provenance and ensuring data integrity.

Often, we want to avoid loading an entire VCF file. Perhaps we are
only interested in a specific region, or we are iterating over the data to
manage resource consumption. Recall that our file has been restricted to
those variants on chr20. Without that restriction, the file would be 40X
larger. The restricted form consumes this much memory:

print(object.size(vcf), unit="auto")

300 Mb

But the raw file would have consumed:

print(object.size(vcf) * 40L, unit="auto")

11.7 Gb

which is beyond the memory capacity of most laptops.
In order to restrict by genomic range, we pass the range to readVcf() via

a ScanVcfParam object. The readVcf() function supports a large number
of parameters, so the designers have encapsulated them in a special type of
object for ease of management. ScanVcfParam is sometimes inconvenient for
simple tasks, but it soon proves its worth, especially when writing reusable
wrappers around readVcf() and related functions.

Although we have already subset the file to chr20, we repeat it here.
The first step is to figure out a representative range for chr20. For that,
we defer to the canonical representation of the hg19 genome in Bioconduc-
tor: the BSgenome.Hsapiens.UCSC.hg19 package. Calling seqinfo() on the

6

genome object returns a Seqinfo object, which is a special object for indi-
cating the names, lengths and other attributes of chromosomes/contigs in a
genome.

library(BSgenome.Hsapiens.UCSC.hg19)
seqinfo(Hsapiens)

Seqinfo of length 93
seqnames seqlengths isCircular genome
chr1 249250621 FALSE hg19
chr2 243199373 FALSE hg19
chr3 198022430 FALSE hg19
chr4 191154276 FALSE hg19
chr5 180915260 FALSE hg19

...

We can coerce the information for chr20 to a GRanges object, which is the
primary object for representing genomic ranges in Bioconductor. A GRanges
is a vector of ranges, where each range is described by its chromosome, start
and end on the chromosome, and strand. The user can add arbitrary columns
to a metadata table with one row per range. In this case, we have a bare
range representing the entire length of chr20:

ranges.chr20 <- as(seqinfo(Hsapiens)["chr20"], "GRanges")
ranges.chr20

GRanges with 1 range and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
chr20 chr20 [1, 63025520] *

seqlengths:

chr20
63025520

We are finally ready perform the restricted query with readVcf:

param <- ScanVcfParam(which=ranges.chr20)
vcf.chr20 <- readVcf(vcf.file, genome="hg19", param=param)

7

3.3.1 Exercises

1. How would we have restricted to chr19 instead of chr20?

2. Let us assume that we are not interested in any of the info() fields
in the file. If we exclude them from the import operation, we can save
valuable time and memory. See ?ScanVcfParam and determine how to
do this.

4 Filtering and reducing VCF data

4.1 Manipulating a VCF object

The readVcf() function returns a VCF object, a derivative of Summarized-
Experiment that fully represents the complexity of the VCF file. This means
that the VCF object needs to be quite general and complex, and it is not
tailored for any particular use case. It is up to the user to reduce the VCF
into an appropriate data structure for the task at hand. Before we can do
that for our use case, we need to understand the structure of the object.

As with the header, the textual display of VCF is quite descriptive and
indicates how we can retrieve the various subcomponents:

vcf

class: CollapsedVCF
dim: 1091548 1
rowData(vcf):
GRanges with 5 metadata columns: paramRangeID, REF, ALT, QUAL, FILTER

info(vcf):
DataFrame with 22 columns: AC, AF, AN, DP, QD, BLOCKAVG_min30p3a, BaseQRan...

info(header(vcf)):
Number Type

AC A Integer
AF A Float
AN 1 Integer
DP 1 Integer
QD 1 Float
BLOCKAVG_min30p3a 0 Flag
BaseQRankSum 1 Float
DS 0 Flag
Dels 1 Float

8

END 1 Integer
FS 1 Float
HRun 1 Integer
HaplotypeScore 1 Float
InbreedingCoeff 1 Float
MQ 1 Float
MQ0 1 Integer
MQRankSum 1 Float
ReadPosRankSum 1 Float
SB 1 Float
VQSLOD 1 Float
culprit 1 String
set 1 String

Description
AC Allele count in genotypes, for each ALT allele,...
AF Allele Frequency, for each ALT allele, in the s...
AN Total number of alleles in called genotypes
DP Approximate read depth; some reads may have bee...
QD Variant Confidence/Quality by Depth
BLOCKAVG_min30p3a Non-variant site block. All sites in a block ar...
BaseQRankSum Z-score from Wilcoxon rank sum test of Alt Vs. ...
DS Were any of the samples downsampled?
Dels Fraction of Reads Containing Spanning Deletions
END End position of the region described in this re...
FS Phred-scaled p-value using Fisher’s exact test ...
HRun Largest Contiguous Homopolymer Run of Variant A...
HaplotypeScore Consistency of the site with at most two segreg...
InbreedingCoeff Inbreeding coefficient as estimated from the ge...
MQ RMS Mapping Quality
MQ0 Total Mapping Quality Zero Reads
MQRankSum Z-score From Wilcoxon rank sum test of Alt vs. ...
ReadPosRankSum Z-score from Wilcoxon rank sum test of Alt vs. ...
SB Strand Bias
VQSLOD Log odds ratio of being a true variant versus b...
culprit The annotation which was the worst performing i...
set Source VCF for the merged record in CombineVari...

geno(vcf):
SimpleList of length 8: GT, GQX, AD, DP, GQ, MQ, PL, VF

geno(header(vcf)):
Number Type Description

9

GT 1 String Genotype
GQX 1 Integer Minimum of {Genotype quality assuming variant p...
AD . Integer Allelic depths for the ref and alt alleles in t...
DP 1 Integer Approximate read depth (reads with MQ=255 or wi...
GQ 1 Float Genotype Quality
MQ 1 Integer RMS Mapping Quality
PL G Integer Normalized, Phred-scaled likelihoods for genoty...
VF 1 Float Variant Frequency, the ratio of the sum of the ...

The rowData(vcf) is a GRanges object indicating the location of each
variant. The metadata columns of the GRanges hold the fixed VCF columns,
including REF, ALT, QUAL and FILTER.

rowData(vcf)

GRanges with 1091548 ranges and 5 metadata columns:
seqnames ranges strand | paramRangeID

<Rle> <IRanges> <Rle> | <factor>
chr20:60001_G/. chr20 [60001, 60001] * | <NA>
chr20:60048_T/. chr20 [60048, 60048] * | <NA>
chr20:60230_A/. chr20 [60230, 60230] * | <NA>
chr20:60447_G/. chr20 [60447, 60447] * | <NA>
chr20:60526_C/. chr20 [60526, 60526] * | <NA>

...
chr20:62965490_T/. chr20 [62965490, 62965490] * | <NA>
chr20:62965507_G/. chr20 [62965507, 62965507] * | <NA>
chr20:62965509_A/. chr20 [62965509, 62965509] * | <NA>
chr20:62965511_T/. chr20 [62965511, 62965511] * | <NA>
chr20:62965514_G/. chr20 [62965514, 62965514] * | <NA>

REF ALT QUAL FILTER
<DNAStringSet> <DNAStringSetList> <numeric> <character>

chr20:60001_G/. G <NA> PASS
chr20:60048_T/. T <NA> PASS
chr20:60230_A/. A <NA> PASS
chr20:60447_G/. G <NA> PASS
chr20:60526_C/. C <NA> PASS

...
chr20:62965490_T/. T <NA> LowGQX
chr20:62965507_G/. G <NA> LowGQX
chr20:62965509_A/. A <NA> LowGQX;LowMQ
chr20:62965511_T/. T <NA> LowGQX;LowMQ

10

chr20:62965514_G/. G <NA> LowGQX

seqlengths:

chr20 chr1 chr10 chr11 ... chrM chrX chrY
63025520 249250621 135534747 135006516 ... 16571 155270560 59373566

Several important attributes are located in the sample-specific geno()
fields, which include the genotype (GT):

head(geno(vcf)$GT)

NA12878
chr20:60001_G/. "0/0"
chr20:60048_T/. "0/0"
chr20:60230_A/. "0/0"
chr20:60447_G/. "0/0"
chr20:60526_C/. "0/0"
chr20:60641_A/. "0/0"

We can see that this particular VCF includes wildtype calls, while we are
only interested in the variants, so we subset the object:

variants <- vcf[geno(vcf)$GT[,1] != "0/0",]

Note that we use matrix-style indexing, because VCF models the data
as a variant by sample matrix.

Of the fixed columns, the most important is the ALT column, which stores
the alternate allele(s) for each record. We can access it directly:

alt(variants)

DNAStringSetList of length 150402
[[1]] T
[[2]] CT
[[3]] C
[[4]] C
[[5]] T
[[6]] C
[[7]] T
[[8]] A
[[9]] A
[[10]] A
...
<150392 more elements>

11

From this output, we first notice that we have more than just SNVs in
our alt alleles. For simplicity, we restrict to SNVs:

snvs <- variants[isSNV(variants),]

The reader may have expected the return value of alt() to be a character
vector; however, there may be multiple alts per record, which means ALT
is stored as the likely unfamiliar CharacterList. While the collapsed List
structure may be appropriate for communicating position-oriented data, such
as population-level polymorphisms, for our use case it is usually easier to
reason on the data in the expanded form, where there is one alt per position
and positions may be repeated. Thus, we expand() our VCF object

snvs <- expand(snvs)
head(alt(snvs))

A DNAStringSet instance of length 6
width seq

[1] 1 T
[2] 1 C
[3] 1 C
[4] 1 T
[5] 1 C
[6] 1 T

and end up with a flat DNAStringSet, essentially a specialized character
vector for DNA sequences.

4.1.1 Exercises

1. Obtain the AD and/or DP components of the snvs object.

2. One could calculate the allele fraction from the AD and DP compo-
nents. However, some variant callers, including GATK, filter the DP
component differently from the counts in AD, so the two values are in-
compatible. Luckily, this file contains the alt frequency as a special
genotype field; which one is it?

3. How much memory have we saved through this filtering? Hint: see the
usage of object.size() in the previous section.

12

4.2 Filtering a VCF file

Typically, we want to process an entire genome; there is nothing particularly
interesting about chr20. We calculated that importing the variants for the
entire genome would consume roughly 9GB of memory, which is infeasible.
However, by filtering to the SNVs we have shrunk the object size from 230
MB to 39 MB (the answer to the last exercise). If we assumed the same
reduction over the entire genome, we would only need about 1.5 GB to load
all of the SNVs in the genome. But how can we do that if we cannot load
the data in the first place? Do we need to resort to the UNIX shell, sacrifice
reproducibility and probably reinvent the wheel, only to discover a bug the
night before we submit our paper? Thankfully, no.

The solution to our quandary is the filterVcf function, which iterates
over the data behind the scenes, apply a user-specified filter to each chunk
before writing it back to disk. We will use filterVcf to perform the same
filtering as in the previous section: restricting to SNVs.

The function accepts two types of filters:

prefilters Applied to the raw text of the file, and

filters Applied to the data parsed as a VCF file.

To avoid the overhead of parsing, we want to do as much work as is safe in
the prefilters, but it is important to realize the risk inherent in implementing
a prefilter: we are essentially writing our own VCF parser.

In this case, we are probably safe with a prefilter that excludes the 0/0
genotypes:

prefilters <- FilterRules(list(restrictToVariants=function(text) {
!grepl("0/0", text, fixed=TRUE)

}))

In the above, we implement our filter as a simple function and wrap it in
a FilterRules object, which filterVcf expects. Our function will be called
on each chunk during the iteration.

We also need to restrict to SNVs, as opposed to indels or other changes.
This is much more complicated and so we need to operate on a parsed VCF
object:

filters <- FilterRules(list(restrictToSNVs=function(vcf) isSNV(vcf)))

Finally, we can invoke filterVcf:

13

filterVcf(vcf.file, genome="hg19", "snvs.vcf", index=TRUE,
prefilters=prefilters, filters=filters,
param=ScanVcfParam(info=NA))

starting prefilter
prefiltering 1091548 records
prefiltered to /tmp/RtmpdU6cy6/file15fd729fc273
prefilter compressing and indexing ’/tmp/RtmpdU6cy6/file15fd729fc273’
starting filter
filtering 150402 records
completed filtering
compressing and indexing ’snvs.vcf’

Above, we have written a new indexed and compressed VCF file,
"snvs.vcf.gz" that contains only the SNVs. We also exclude the relatively
uninteresting INFO fields (answer to a previous exercise) for a further reduc-
tion.

4.2.1 Exercises

1. What if we wanted to create a separate file with all of the indels? Hint:
see ?isIndel.

5 Diagnosing variants

5.1 QC of variant frequency and coverage

Upon import of an unfamiliar set of variants, we recommend generating
and analyzing some diagnostic annotations to ascertain some notion of the
quality of the data.

A useful diagnostic is the association between variant frequency and cov-
erage. Given the diploid assumption, we expect variant frequencies to con-
centrate around 0.5 or 1.0. Any deviation from this is an indicator of artifact.
For example, we suspect that outlying coverage values will present aberrant
frequencies. To demonstrate, we first plot our coverage distribution to get a
feel for the appropriate cutoffs:

library(lattice)
densityplot(~ geno(snvs)$DP, xlim=c(0, 2*median(geno(snvs)$DP, na.rm=TRUE)),

plot.points=FALSE)

14

geno(snvs)$DP

D
en

si
ty

0.00

0.01

0.02

0.03

20 40 60 80

From this distribution, it seems appropriate to cut like this and plot the
relationship to variant frequency, which we calculate from AD and DP (which
are much more standard than VF):

rowData(snvs)$coverage.bin <- cut(geno(snvs)$DP, c(0, 20, 80, Inf))
rowData(snvs)$variant.freq <- geno(snvs)$AD[,,2]/geno(snvs)$DP[,1]
densityplot(~ variant.freq | coverage.bin,

as.data.frame(rowData(snvs)),
plot.points=FALSE, layout=c(3,1),
xlab="variant frequency by coverage bin")

variant frequency by coverage bin

D
en

si
ty

0

1

2

3

0.0 0.5 1.0

(0,20]

0.0 0.5 1.0

(20,80]

0.0 0.5 1.0

(80,Inf]

15

We notice some interesting trends. First, there is a mode, even in the
(20,80] coverage range, that is at a lower frequency than the het mode. This
mode is dominant at extremely low and high coverage. The corresponding
variant calls are very likely artifacts. In the high coverage bin, the hom
variants seem to have shifted to above 75% frequency.

Since we can assume that Illumina is good at sequencing, these problems
are likely due to alignment. Alignment is a function of the read sequence
and the reference sequence. Indels in the reads will give the aligner trouble.
Genomic context, such as homopolymers and paralogs, are also problematic
and tend to indicate regions where the invidual genome will differ structurally
from the reference.

5.2 Applying included filters

Some useful annotations are already present in the VCF file. For example,
we can summarize the filt() component, which is a semi-colon separated
list of filter codes generated by the variant caller, where "PASS" indicates
that all QC filters were passed. First, we list the descriptions of the filter
codes from the header:

fixed(header(snvs))$FILTER

DataFrame with 9 rows and 1 column
Description
<character>
LowGQX Locus GQX is less than 30.0000 or not present
LowQD Locus QD is less than 2.0000
LowMQ Site MQ is less than 20.0000
IndelConflict Locus is in region with conflicting indel calls.
MaxDepth Site depth is greater than 3.0x the mean chromosome...
SiteConflict Site genotype conflicts with proximal indel call...
... ...

These filters point to common issues with SNV calls, in particular con-
flicts with indels (IndelConflict and SiteConflict) and abnormally high
coverage (MaxDepth).

Next, a simple filter summary:

table(unlist(strsplit(filt(snvs), ";", fixed=TRUE)))

IndelConflict LowGQX

16

35 11020
LowMQ LowQD
1055 19583

MaxDepth PASS
25 68626

SiteConflict TruthSensitivityTranche99.00to99.90
785 17174

TruthSensitivityTranche99.90to100.00
28793

It looks like a large number of variants have FILT values other than
"PASS". For the purposes of this tutorial, we will restrict to the "PASS"
variants.

snvs <- snvs[grep("PASS", filt(snvs), fixed=TRUE),]

After that filter, there are very few positions with outlying coverage val-
ues:

table(rowData(snvs)$coverage.bin)

(0,20] (20,80] (80,Inf]
63 68528 35

And the frequency distribution matches our expectations:

densityplot(~ variant.freq, as.data.frame(rowData(snvs)),
plot.points=FALSE,
xlab="variant frequency")

17

variant frequency

D
en

si
ty

0

1

2

3

4

5

0.2 0.4 0.6 0.8 1.0

5.2.1 Exercises

1. Use the patterns presented above to determine which specific filters
were most responsible for removing the group of low frequency variants.

5.3 Indel proximity

We look first at indel proximity. The FILT component of the VCF already
has some filters related to indels, but this will not be present in general, so
we will repeat the analysis here. First, we find the indels:

indels <- variants[isIndel(variants)]

Then, we generate a window around the each indel, say 10bp on either
side.

indel.windows <- rowData(indels) + 10

Sponsored message from IRanges, Inc:

The usage of + above may be surprising. It adds 10bp to either
side of the indels in the rowData, which we recall is a GRanges
object. There are many such operations defined for range ob-
jects in Bioconductor. The + convenience is based on the resize

18

operation, an example of an intra-range operation, because each
range is treated separately. See ?resize for the list of intra-
range functions. The inter-range-operations consider all of the
ranges at once and are mostly ways to summarize ranges. See
¿inter-range-methods‘ for a list.

The next step is to find which SNVs overlap an indel window:

rowData(snvs)$near.indel <- snvs %over% indel.windows

Sponsored message from IRanges, Inc:

The usage of %over% is one of the convenience functions in the
overlap detection framework implemented for SummarizedExper-
iment, GRanges and other range objects in Bioconductor. The
%over% function returns TRUE or FALSE for each range in its left
argument, depending on whether there is any overlap with a
range in its right argument. It is just the tip of the iceberg:
see ?findOverlaps.

As with the coverage bins and variant frequency, we have taken advantage
of the metadata support in GRanges to store the indel overlap status along
with the SNVs. It is a good idea to do this whenever sensible, because it
organizes data in a way that promotes data integrity and keeps the workspace
clean.

A simple summary reveals that very few SNVs are near an indel:

xtabs(~ near.indel, mcols(rowData(snvs)))

near.indel
FALSE TRUE
68415 211

5.4 Homopolymer overlap

Variant calling is often problematic in regions of homopolymers. They are
difficult regions, both for alignment and interpretation.

To determine which variants overlap homopolymers, we need find the
homopolymers in the reference. First, we load the reference sequence for
chr20:

chr20.sequence <- getSeq(Hsapiens, "chr20")

19

Then, we convert the DNA sequence into a run-length encoding, which
Bioconductor represents with the Rle class.

chr20.hp <- ranges(Rle(as.raw(chr20.sequence)))

Sponsored message from IRanges, Inc:

An Rle object acts like an ordinary vector in R, but it is internally
represented as a vector of runs of identical values, each with a
value and length. This representation is more efficient, both in
terms of run-time and memory consumption, for data with long
runs of identical values, including sparse data with long runs of
zeros. We often use it to represent coverage, especially when
the coverage is sparse due to enrichment. In this case, we are
interested in the runs themselves and extract the corresponding
ranges with ranges().

A C G G T T T T T T T T C C A
A C G
1 1 2

T
8 2

C A
1

Figure 1: Representing homopolymers in a sequence (top) with a run-length
encoding (bottom).

We somewhat arbitrarily decide that homopolymers become interesting
after they exceed the length of 6:

chr20.hp <- chr20.hp[width(chr20.hp) > 6L]

Finally, we find the variants that overlap a homopolymer and summarize
the counts:

rowData(snvs)$over.hp <- ranges(snvs) %over% chr20.hp
xtabs(~ over.hp, mcols(rowData(snvs)))

over.hp
FALSE TRUE
67874 752

20

5.5 Self-chain scores

The UCSC genome browser has published a track that indicates whether a
region shares similarity with another region in the genome. Related positions
are termed "self-chained" and tend to be problematic to align due to ambi-
guity. Due to differences between the individual genome and the reference,
aligners often pile up reads in one of the ambiguous regions. This leads to
non-diploid frequencies and interpretation challenges.

We have included a GRanges of the self-chained regions for chr20 in the
tutorial package:

data(selfChains)

5.5.1 Exercises

1. Find the overlap between the snvs object and the selfChains. Store
the result on the rowData(). Summarize it somehow.

6 Interpreting variants

Having generated sufficient diagnostics, we turn our attention to annotations
aimed at determining the consequences of a variant. The VariantAnnotation
package provides several convenient functions for the common operations.

6.1 Genomic context

The locateVariants function annotates variants with their genomic context.
It requires the variants, the gene models and a variant category:

gene.models <- TxDb.Hsapiens.UCSC.hg19.knownGene
locations <- locateVariants(snvs, gene.models, CodingVariants())

The return value, locations, is a GRanges with these columns:

colnames(mcols(locations))

[1] "LOCATION" "QUERYID" "TXID" "CDSID" "GENEID" "PRECEDEID"
[7] "FOLLOWID"

Most of them identify the overlapping genomic feature for any variant
that overlaps the coding region. See ?locateVariants for details.

Notice that the locations object is only annotating a subset of the input
variants: only those that are in coding regions. If we want to map these

21

annotations back into our input, substituting NA for the non-coding variants,
we need to take advantage of the QUERYID column:

rowData(snvs)$coding.tx <- NA_integer_
rowData(snvs)$coding.tx[locations$QUERYID] <- locations$TXID

When interpreting hits at the gene level, we often want to see the
gene symbols. This mapping is provided by the AnnotationDbi infrastruc-
ture:

syms <- unlist(mget(locations$GENEID[!is.na(locations$GENEID)],
org.Hs.egSYMBOL,
ifnotfound=NA))

locations$SYMBOL[!is.na(locations$GENEID)] <- syms

6.1.1 Exercises

1. Merge the coding$SYMBOL back into the original snvs object.

2. We found the variants that overlap a coding region; how would we find
those inside a promoter?

6.2 Coding consequences

The predictCoding function predicts coding consequences. We need to pass
it the variants, the gene models, and the genomic sequence:

coding <- predictCoding(snvs, gene.models, Hsapiens)

The returned object, coding, is a GRanges object with a number of
metadata columns:

colnames(mcols(coding))

[1] "paramRangeID" "coverage.bin" "variant.freq" "near.indel" "over.hp"
[6] "coding.tx" "REF" "ALT" "QUAL" "FILTER"

[11] "varAllele" "CDSLOC" "PROTEINLOC" "QUERYID" "TXID"
[16] "CDSID" "GENEID" "CONSEQUENCE" "REFCODON" "VARCODON"
[21] "REFAA" "VARAA"

These include columns from the input VCF, the affected gene/transcript/CDS,
locations relative to the CDS and protein, and the consequences, including
the codon and amino acid changes. See ?predictCoding for a detailed de-
scription of the columns.

As an example summary, we tabulate the consequence codes:

22

table(coding$CONSEQUENCE)

nonsense nonsynonymous synonymous
1 502 809

6.2.1 Exercises

1. Cross tabulate the ref and alt amino acids.

2. Find the variant that occurred in the SOX12 gene.

6.3 Genetic disorders

The VariantFiltering package annotates and filters variants from the per-
spective of genetic disorders among related or unrelated individuals. Within
related individuals, it is capable of modeling inheritance. It integrates anno-
tations from a number of sources, including VariantAnnotation, Polyphen,
SIFT, and UCSC phastCon conservation scores. We will apply the package
to find autosomal recessive homozygous variants within the CEU trio. Most
of this example was taken directly from the package vignette.

The first step is to construct a parameter object for the analysis, given
the CEU trio VCF file (from the 1000 Genomes) and a PED file representing
the pedigree:

CEUvcf <- file.path(system.file("extdata", package="VariantFiltering"),
"CEUtrio.vcf.bgz")

CEUped <- file.path(system.file("extdata", package="VariantFiltering"),
"CEUtrio.ped")

param <- VariantFilteringParam(vcfFilenames=CEUvcf, pedFilename=CEUped)

Error: could not find function "VariantFilteringParam"

There are many analyses available in the package. Here we perform the
autosomal recessive analysis.

reHo <- autosomalRecessiveHomozygous(param)
reHo

We can filter the variants interactively using a web app:

aim <- reportVariants(reHo)

23

There are various possible operations on the result object, such as re-
stricting the populations used for MAF filtering:

maxMAF(reHo) <- 0.05
MAFmask <- MAFpop(reHo)
MAFmask

MAFpop(reHo) <- !MAFmask
MAFpop(reHo, "ASN_AFKG") <- TRUE
MAFpop(reHo)

minCRYP5ss(reHo) <- 0
reHo

After filtering, we end up with a single variant:

filteredVariants(reHo)

7 Comparing variant sets

It is often of interest to compare two or more sets of variants. For our
use case, we are interested in checking concordance between the Platinum
genome calls and those published with the GATK paper for the same indi-
vidual (NA12878).

7.1 Exercise: Loading the Broad/GATK callset

Please obtain the file "CEUTrio.HiSeq.WGS.b37.bestPractices.phased.b37.vcf.gz"
and its associated index from the ScalableGenomicsTutorial directory on the
USB stick. It represents the best-practice variant calls from the GATK pa-
per, made available as part of the GATK bundle. It contains genotypes for
all three members of the CEU trio.

As an exercise,

1. Load the variants on chr20 for only NA12878 and

2. Filter them to the SNVs, where the genotype is not "0/0".

3. Note that the Broad calls use a different chromosome naming conven-
tion ("NCBI" instead of "UCSC"), so it is necessary to convert the
style of the ranges.chr20 when forming the query, and the style of the
loaded object must be converted in the opposite direction to match
those of the Illumina calls. See ?seqlevelsStyle.

24

4. Since the mitochondrial chromosome differs between NCBI and UCSC,
it is best to use dropSeqlevels to remove "chrM" from snvs.

7.2 Intersecting variant sets

To check whether two variant calls are identical, we need to check the chromo-
some, start, end (for non-SNVs) and alt allele. When finding exact matches
between GRanges objects, the alt allele is not considered. Thus, we need a
special derivative of GRanges called VRanges. Below, we coerce each VCF
object to a VRanges and then check which sites in the Illumina calls match
a call in the Broad set.

broad.vr <- as(broad.snvs, "VRanges")
illumina.vr <- as(snvs, "VRanges")
illumina.vr$in.broad <- illumina.vr %in% broad.vr
mean(illumina.vr$in.broad)

[1] 0.9905429

We find that 99% of the Illumina variants were also found by the Broad.
To compare the variant frequencies, we can merge the variant frequencies

from the Broad set into the Illumina set:

illumina.vr$broad.freq <- altFraction(broad.vr)[match(illumina.vr, broad.vr)]

Note the use of the altFraction convenience function that operates on a
VRanges. We can do this with VRanges since the coercion to VRanges
asserts that the AD and DP fields conform to the informal conventions of
GATK and related tools.

Now we can make a scatterplot:

xyplot(broad.freq ~ altFraction(illumina.vr),
as.data.frame(illumina.vr),
panel=panel.smoothScatter,
xlab="Illumina frequency", ylab="Broad frequency")

25

Illumina frequency

B
ro

ad
 fr

eq
ue

nc
y

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

We find that the frequencies agree, for the most part, although there
is a number of cases with zero frequencies in the Broad set, but non-zero
frequencies from Illumina.

7.2.1 Exercises

1. See ?softFilterMatrix and ?called to subset broad.vr to the variants
that passed all filters.

2. Make a density plot of the variant frequencies from broad.vr.

3. What percentage of the Broad calls were not called by Illumina?

7.3 Manipulating gVCF runs

This VCF file is a special type of VCF file for whole genome genotyping
called gVCF, where the "g" stands for genomic. It contains summarized
runs for non-variant regions, which is more efficient than storing a record for
every position in the genome. These regions may be considered wildtype or
no-call, depending on the indicated quality of the 0/0 genotype.

The combination of CHROM, POS and the END INFO field specify the range of
the run, and the primary value of interest is the genotype quality (GQX). We
can manipulate the VCF object so that the ranges represent the runs:

26

runs <- vcf[!is.na(info(vcf)$END),]
end(rowData(runs)) <- info(runs)$END

Then we might check how much of chr20 is covered by a run:

sum(width(runs)) / seqlengths(runs)["chr20"]

chr20
0.9403234

7.3.1 Exercises

1. Assuming that a "PASS" value for filt(runs) indicates wildtype and
no-call otherwise, what percentage of the genome was callable?

2. For the unique Broad variants found in a previous exercise, how many
of them were called wildtype vs. no-call by Illumina?

27

	Introduction
	Dataset
	Importing variants from VCF
	VCF: Variant Call Format
	Previewing a VCF file
	Exercises

	VCF import
	Exercises

	Filtering and reducing VCF data
	Manipulating a VCF object
	Exercises

	Filtering a VCF file
	Exercises

	Diagnosing variants
	QC of variant frequency and coverage
	Applying included filters
	Exercises

	Indel proximity
	Homopolymer overlap
	Self-chain scores
	Exercises

	Interpreting variants
	Genomic context
	Exercises

	Coding consequences
	Exercises

	Genetic disorders

	Comparing variant sets
	Exercise: Loading the Broad/GATK callset
	Intersecting variant sets
	Exercises

	Manipulating gVCF runs
	Exercises

