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1 Introduction

1.1 Bioconductor

Bioconductor is a collection of R packages for the analysis and comprehension
of high-throughput genomic data. Bioconductor started more than 10 years
ago. It gained credibility for its statistically rigorous approach to microarray
pre-preprocessing and designed experiments, and integrative and reproducible
approaches to bioinformatic tasks. There are now more than 460 Bioconductor
packages for expression and other microarrays, sequence analysis, flow cytome-
try, imaging, and other domains. The Bioconductor web site provides installa-
tion, package repository, help, and other documentation.

1.2 High-throughput sequence analysis

Recent technological developments introduce high-throughput sequencing ap-
proaches. A variety of experimental protocols and analysis work flows address
gene expression, regulation, and encoding of genic variants. Experimental proto-
cols produces a large number (millions per sample) of short (e.g., 35-100, single
or paired-end) nucleotide sequences. These are aligned to a reference or other
genome. Analysis work flows use the alignments to infer levels of gene expression
(RNA-seq), binding of regulatory elements to genomic locations (ChIP-seq), or
prevalence of structural variants (e.g., SNPs, short indels, large-scale genomic
rearrangements). Sample sizes range from minimal replication (e.g,. 2 samples
per treatment group) to thousands of individuals.

1.3 This workshop

This workshop introduces use of R and Bioconductor for analysis of high-
throughput sequence data. The workshop is structured as a series of short
remarks followed by group exercises. The exercises explore the diversity of tasks
for which R / Bioconductor are appropriate for, but are far from comprehensive.

The goals of the workshop are to: (1) develop familiarity with R / Biocon-
ductor software for high-throughput analysis; (2) expose key statistical issues
in the analysis of sequence data; and (3) provide inspiration and a framework
for further independent exploration.
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2 R and Bioconductor

R is an open-source statistical programming language. It is used to manipu-
late data, to perform statistical analyses, and to present graphical and other
results. R consists of a core language, additional ‘packages’ distributed with the
R language, and a very large number of packages contributed by the broader
community. Packages add specific functionality to an R installation. R has be-
come the primary language of academic statistical analyses, and is widely used
in diverse areas of research, government, and industry.

R has several unique features. It has a surprisingly ‘old school’ interface:
users type commands into a console; scripts in plain text represent work flows;
tools other than R are used for editing and other tasks. R is a flexible pro-
gramming language, so while one person might use functions provided by R to
accomplish advanced analytic tasks, another might implement their own func-
tions for novel data. As a programming language, R adopts syntax and grammar
that differ from many other languages: objects in R are ‘vectors’, and functions
are ‘vectorized’ to operate on all elements of the object; R objects have ‘copy
on change’ and ‘pass by value’ semantics, reducing unexpected consequences for
users at the expense of less efficient memory use; common paradigms in other
languages, such as the ‘for’ loop, are encountered much less commonly in R.
Many authors contribute to R so there can be a frustrating inconsistency of
documentation and interface. R grew up in the academic community, so au-
thors have not shied away from trying new approaches. Of course statistical
analyses, especially exploratory, are very well-developed.

Bioconductor is a collection of R packages for the analysis and comprehen-
sion of high-throughput genomic data. Bioconductor started more than 10 years
ago. It gained credibility for its statistically rigorous approach to microarray
pre-preprocessing and designed experiments, and integrative and reproducible
approaches to bioinformatic tasks. There are now more than 460 Bioconductor
packages for expression and other microarrays, sequence analysis, flow cytome-
try, imaging, and other domains.

2.1 Statistical programming

Many academic and commercial software products are available; why would one
use R and Bioconductor? One answer is to ask what demands high-throughput
genomic data place on the effectiveness of computational biology software.

Effective computational biology software High-throughput questions make
use of large data sets. This applies both to the primary data (microarray ex-
pression values, sequenced reads, etc.) and also to the annotations on those
data (coordinates of genes and features such as exons or regulatory regions;
participation in biological pathways, etc.). Large data sets place demands on
our tools that preclude some standard approaches, such as spread sheets. Like-
wise intricate relationships between data and annotation, and the diversity of
research questions, require flexibility typical of a programming language rather
than a narrowly-enabled graphical user interface.

Analysis of high-throughput data is necessarily statistical. The volume of
data requires that it be appropriately summarized before any sort of compre-
hension is possible. The data are produced by advanced technologies, and these
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introduce artifacts (e.g., probe-specific bias in microarrays; sequence or base
calling bias in RNA-seq experiments) that need to be accommodated to avoid
incorrect or inefficient inference. Data sets typically derive from designed ex-
periments, requiring a statistical approach both to account for the design, and
to correctly address the large number of observed values (e.g., gene expression
or sequence tag counts) and small number of samples accessible in typical ex-
periments.

Research needs to be reproducible. Reproducibility is both an ideal of the
scientific method, and a pragmatic requirement. The latter comes from the
long-term and multi-participant nature of contemporary science. An analysis
will be performed for the initial experiment, revisited during manuscript prepa-
ration, and revisited during reviews or in determining next steps. Likewise,
analyses typically involve a team of individuals with diverse domains of exper-
tise. Effective collaborations result when it is easy to reproduce, perhaps with
minor modifications, an existing result, and when sophisticated statistical or
bioinformatic analyses can be effectively conveyed to other group members.

Science moves very quickly. This is driven by the novel questions that are the
hallmark of discovery, and by technological innovation and accessibility. This
places significant burdens on software, which must also move quickly. Effective
software cannot be too polished, because that requires that the correct analyses
are ‘known’ and that significant resources of time and money have been invested
in developing the software; this implies software that is tracking the trailing
edge of innovation. On the other hand, leading-edge software cannot be too
idiosyncratic; it must be usable by a wider audience than the creator of the
software, and fit in with other software relevant to the analysis.

Effective software must be accessible. Affordability is one aspect of acces-
sibility. Another is transparent implementation, where the novel software is
sufficiently documented and source code accessible enough for the assumptions,
approaches, practical implementation decisions, and inevitable coding errors to
be assessed by other skilled practitioners. A final aspect of affordability is that
the software is actually usable. This is achieved through adequate documenta-
tion, support forums, and training opportunities.

Bioconductor as effective computational biology software What fea-
tures of R and Bioconductor contribute to its effectiveness as a software tool?

Bioconductor is well suited to handle extensive data and annotation. Bio-
conductor ‘classes’ represent high-throughput data and their annotation in an
integrated way. Bioconductor methods use advanced programming techniques
or R resources (such as transparent data base or network access) to minimize
memory requirements and integrate with diverse resources. Classes and meth-
ods coordinate complicated data sets with extensive annotation. Nonetheless,
the basic model for object manipulation in R involves vectorized in-memory
representations. For this reason, particular programming paradigms (e.g., block
processing of data streams; explicit parallelism) or hardware resources (e.g.,
large-memory computers) are sometimes required when dealing with extensive
data.

R is ideally suited to addressing the statistical challenges of high-throughput
data. Three examples include the development of the ‘RMA’ and other normal-
ization algorithm for microarray pre-processing, use of moderated t-statistics for
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assessing microarray differential expression, and development of approaches to
estimating dispersion read counts necessary for appropriate analysis of RNAseq
designed experiments.

Many of the ‘old school’ aspects of R and Bioconductor facilitate repro-
ducible research. An analysis is often represented as a text-based script. Repro-
ducing the analysis involves re-running the script; adjusting how the analysis is
performed involves simple text-editing tasks. Beyond this, R has the notion of
a ‘vignette’, which represents an analysis as a LATEX document with embedded
R commands. The R commands are evaluated when the document is built, thus
reproducing the analysis. The use of LATEX means that the symbolic manipula-
tions in the script are augmented with textual explanations and justifications for
the approach taken; these include graphical and tabular summaries at appropri-
ate places in the analysis. R includes facilities for reporting the exact version of
R and associated packages used in an analysis so that, if needed, discrepancies
between software versions can be tracked down and their importance evaluated.
While users often think of R packages as providing new functionality, they are
also used to encapsulate a single analysis. The package can contain data sets,
vignette(s) describing the analysis, R functions that might have been written,
scripts for key data processing stages, and documentation (via standard R help
mechanisms) of what the functions, data, and packages are about.

The Bioconductor project adopts practices that facilitate reproducibility.
Versions of R and Bioconductor are released twice each year. Each Bioconductor
release is the result of development, in a separate branch, during the previous
six months. The release is built daily against the corresponding version of R on
Linux, Mac, and Windows platforms, with an extensive suite of tests performed.
The biocLite function ensures that each release of R uses the corresponding
Bioconductor packages. The user thus has access to stable and tested package
versions. R and Bioconductor are effective tools for reproducible research.

R and Bioconductor exist on the leading portion of the software life cycle.
Contributors are primarily from academic institutions, and are directly involved
in leading-edge research activities. New developments are made available in a
familiar format, i.e., the R language, packaging, and build systems. The rich set
of facilities in R (e.g., for advanced statistical analysis or visualization) and the
extensive resources in Bioconductor (e.g., for annotation using third-party data
such as Biomart or the UCSC genome browser tracks) mean that innovations can
be directly incorporated into existing work flows. The ‘development’ branches
of R and Bioconductor provide an environment where contributors can explore
new approaches without alienating their user base.

R and Bioconductor also fair well in terms of accessibility. The software
is freely available. The source code is easily and fully accessible for critical
evaluation. The R packaging and check system requires that all functions are
documented. Bioconductor requires that each package contain vignettes to illus-
trate the use of the software. There are very active R and Bioconductor mailing
lists for immediate support, and regular training and conference activities for
professional development.

2.2 R data types

Opening an R session results in a prompt. The user types instructions at the
prompt. Here’s an example:
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> ## assign values 5, 4, 3, 2, 1 to variable 'x'
> x <- c(5, 4, 3, 2, 1)

> x

[1] 5 4 3 2 1

The first line starts with a # to represent a comment; the line is ignored
by R. The next line creates a variable x. The variable is assigned (using <-,
we could have used = almost interchangeably) a value. The value assigned is
the result of a call to the c function. That it is a function call is indicated by
the symbol named followed by parentheses, c(). The c function takes zero or
more arguments, and returns a vector. The vector is the value assigned to x.
R responds to this line with a new prompt, ready for the next input. The next
line asks R to display the value of the variable x. R responds by printing [1] to
indicate that the subsequent number is the first element of the vector. It then
prints the value of x.

R has many features to aid common operations. Entering sequences is a very
common operation, and expressions of the form 2:4 create a sequence from 2

to 4. Subsetting one vector by another is enabled with [. Here we create a
sequence from 2 to 4, and use the sequence as an index to select the second,
third, and fourth elements of x

> x[2:4]

[1] 4 3 2

R functions operate on variables. Functions are usually vectorized, acting
on all elements of their argument and obviating the need for explicit iteration.
Functions can generate warnings when performing suspect operations, or errors
if evaluation cannot proceed; try log(0) or log(-1).

> log(x)

[1] 1.61 1.39 1.10 0.69 0.00

Essential data types R has a number of standard data types, to represent
integer, numeric (floating point), complex, character, logical (boolean),
and raw (byte) data. It is possible to convert between data types, and to
discover the type or mode of a variable.

> c(1.1, 1.2, 1.3) # numeric

[1] 1.1 1.2 1.3

> c(FALSE, TRUE, FALSE) # logical

[1] FALSE TRUE FALSE

> c("foo", "bar", "baz") # character, single or double quote ok

[1] "foo" "bar" "baz"

> as.character(x) # convert 'x' to character
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[1] "5" "4" "3" "2" "1"

> typeof(x) # the number 5 is numeric, not integer

[1] "double"

> typeof(2L) # append 'L' to force integer

[1] "integer"

> typeof(2:4) # ':' produces a sequence of integers

[1] "integer"

R includes data types particularly useful for statistical analysis, including fac-

tor to represent categories and NA (used in any vector) to represent missing
values.

> sex <- factor(c("Male", "Female", NA), levels=c("Female", "Male"))

> sex

[1] Male Female <NA>

Levels: Female Male

Lists, data frames, and matrices All of the vectors mentioned so far are
homogenous, consisting of a single type of element. A list can contain a
collection of different types of elements and, like all vectors, these elements can
be named to create a key-value association.

> lst <- list(a=1:3, b=c("foo", "bar"), c=sex)

> lst

$a

[1] 1 2 3

$b

[1] "foo" "bar"

$c

[1] Male Female <NA>

Levels: Female Male

Lists can be subset like other vectors to get another list, or subset with [[ to
retrieve the actual list element; as with other vectors, subsetting can use names

> lst[c(3, 1)] # another list

$c

[1] Male Female <NA>

Levels: Female Male

$a

[1] 1 2 3
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> lst[["a"]] # the element itself, by name

[1] 1 2 3

A data.frame is a list of equal-length vectors, representing a rectangular
data structure not unlike a spread sheet. Each column of the data frame is a
vector, so data types must be homogenous with a column. A data.frame can
be subset by row or column, and columns can be accessed with $ or [[.

> df <- data.frame(age=c(27L, 32L, 19L),

+ sex=factor(c("Male", "Female", "Male")))

> df

age sex

1 27 Male

2 32 Female

3 19 Male

> df[c(1, 3),]

age sex

1 27 Male

3 19 Male

> df[df$age > 20,]

age sex

1 27 Male

2 32 Female

A matrix is also a rectangular data structure, but subject to the constraint
that all elements are the same type. A matrix is created by taking a vector, and
specifying the number of rows or columns the vector is to represent. On subset-
ting, R coerces a single column data.frame or single row or column matrix to
a vector if possible; use drop=FALSE to stop this behavior.

> m <- matrix(1:12, nrow=3)

> m

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> m[c(1, 3), c(2, 4)]

[,1] [,2]

[1,] 4 10

[2,] 6 12

> m[, 3]

[1] 7 8 9
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> m[, 3, drop=FALSE]

[,1]

[1,] 7

[2,] 8

[3,] 9

An array is a data structure for representing homogenous, rectangular data in
higher dimensions.

S3 and S4 classes More complicated data structures are represented using
the ‘S3’ or ‘S4’ object system. Objects are often created by functions (lm,
below), with parts of the object extracted or assigned using accessor functions.
The following generates 1000 random normal deviates as x, and uses these to
create another 1000 deviates y that are linearly related to x but with some error.
We fit a linear regression using a ‘formula’ to describe the relationship between
variables, summarize the results in a familiar ANOVA table, and access fit (an
S3 object) for the residuals of the regression, using these as input first to the var

(variance) and then sqrt (square-root) functions. Objects can be interogated
for their class.

> x <- rnorm(1000, sd=1)

> y <- x + rnorm(1000, sd=.5)

> fit <- lm(y ~ x) # formula describes linear regression

> fit # an 'S3' object

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

0.00543 1.00444

> anova(fit)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 1045 1045 4307 <2e-16 ***

Residuals 998 242 0

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

> sqrt(var(resid(fit))) # residuals accessor and subsequent transforms

[1] 0.49

> class(fit)

[1] "lm"

Many Bioconductor packages implement S4 objects to represent data. S3
and S4 systems are quite different from a programmer’s perspective, but fairly
similar from a user’s perspective: both systems encapsulate complicated data
structures, and allow for methods specialized to different data types.
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Functions R functions accept arguments, and return values. Arguments can
be required or optional. Some functions may take variable numbers of argu-
ments, e.g., the columns in a data.frame

> y <- 5:1

> log(y)

[1] 1.61 1.39 1.10 0.69 0.00

> args(log) # arguments 'x' and 'base'; see ?log

function (x, base = exp(1))

NULL

> log(y, base=2) # 'base' is optional, with default value

[1] 2.3 2.0 1.6 1.0 0.0

> try(log()) # 'x' required; 'try' continues even on error

> args(data.frame) # ... represents variable number of arguments

function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,

stringsAsFactors = default.stringsAsFactors())

NULL

Arguments can be matched by position or by name. If an argument appears
after ..., it must be named.

> log(base=2, y) # match argument 'base' by name, 'x' by position

[1] 2.3 2.0 1.6 1.0 0.0

A generic may have fewer arguments than a method, as with the S3 function
anova and its method anova.glm.

> args(anova)

function (object, ...)

NULL

> args(anova.glm)

function (object, ..., dispersion = NULL, test = NULL)

NULL

2.3 Packages

Packages provide functionality beyond that available in base R. There are over
3000 packages in CRAN (comprehensive R archive network) and more than 460
Bioconductor packages. Packages are contributed by diverse members of the
community; they vary in quality (many are excellent) and sometimes contain
idiosyncratic aspects to their implementation.

The lattice package is distributed with R but not loaded by default. It
provides a very expressive way to visualize data. The following example plots
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Figure 1: Variety yield conditional on site and grouped by year, for the barley

data set.

yield for a number of barley varieties, conditioned on site and grouped by year.
Figure 1 is read from the lower left corner. Note the common scales, efficient
use of space, and not-too-pleasing default color palette. The Waseca sample
appears to be mis-labelled for ‘year’, an apparent error in the original data.
Find out about the built-in data set used in this example with ?barley.

> library(lattice)

> dotplot(variety ~ yield | site, data = barley, groups = year,

+ key = simpleKey(levels(barley$year), space = "right"),

+ xlab = "Barley Yield (bushels/acre) ",

+ aspect=0.5, layout = c(2,3), ylab=NULL)

New packages can be added to an R installation using install.packages.
A package is installed only once per R installation, but needs to be loaded (with
library) in each session in which it is used. Loaded packages are displayed
with search. The path returned by search represents the order in which the
global environment (where commands entered at the prompt are evaluated)
and attached packages are searched for symbols; it is possible for a package
earlier in the search path to mask symbols later in the search path; these can
be disambiguated using ::.

> search()

[1] ".GlobalEnv"

[2] "package:useR2011"

11



[3] "package:BSgenome.Dmelanogaster.UCSC.dm3"

[4] "package:BSgenome"

[5] "package:org.Dm.eg.db"

[6] "package:RSQLite"

[7] "package:DBI"

[8] "package:AnnotationDbi"

[9] "package:Biobase"

[10] "package:goseq"

[11] "package:geneLenDataBase"

[12] "package:BiasedUrn"

[13] "package:edgeR"

[14] "package:ShortRead"

[15] "package:Rsamtools"

[16] "package:lattice"

[17] "package:Biostrings"

[18] "package:GenomicFeatures"

[19] "package:GenomicRanges"

[20] "package:IRanges"

[21] "package:stats"

[22] "package:graphics"

[23] "package:grDevices"

[24] "package:utils"

[25] "package:datasets"

[26] "package:methods"

[27] "Autoloads"

[28] "package:base"

> base::log(1:3)

[1] 0.00 0.69 1.10

Exercise 1
Use the library function to load the useR2011 package. Use the sessionInfo

function to verify that you are using R version 2.13.1 and current packages,
similar to those reported here.

Solution:

> library(useR2011)

> sessionInfo()

R version 2.13.1 (2011-07-08)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
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attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] useR2011_0.1.0

[2] BSgenome.Dmelanogaster.UCSC.dm3_1.3.17

[3] BSgenome_1.20.0

[4] org.Dm.eg.db_2.5.0

[5] RSQLite_0.9-4

[6] DBI_0.2-5

[7] AnnotationDbi_1.14.1

[8] Biobase_2.12.2

[9] goseq_1.4.0

[10] geneLenDataBase_0.99.7

[11] BiasedUrn_1.04

[12] edgeR_2.2.5

[13] ShortRead_1.10.4

[14] Rsamtools_1.4.3

[15] lattice_0.19-31

[16] Biostrings_2.20.2

[17] GenomicFeatures_1.4.4

[18] GenomicRanges_1.4.7

[19] IRanges_1.10.6

loaded via a namespace (and not attached):

[1] Matrix_0.9996875-3 RCurl_1.6-7 XML_3.4-2 biomaRt_2.8.1

[5] grid_2.13.1 hwriter_1.3 limma_3.8.3 mgcv_1.7-6

[9] nlme_3.1-102 rtracklayer_1.12.4 tools_2.13.1

2.4 Help

Find help using the R help system. Start a web browser with

> help.start()

The ‘Search Engine and Keywords’ link is helpful in day-to-day use.

Manual pages Use manual pages to find detailed descriptions of the argu-
ments and return values of functions, and the structure and methods of classes.
Find help within an R session as

> ?data.frame

> ?lm

> ?anova # a generic function

> ?anova.lm # an S3 method, specialized for 'lm' objects

S3 methods can be queried interactively. For S3,

> methods(anova)
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[1] anova.MAList* anova.gam* anova.glm anova.glmlist anova.gls*

[6] anova.lm anova.lme* anova.loess* anova.mlm anova.nls*

Non-visible functions are asterisked

> methods(class="lm")

[1] add1.lm* alias.lm* anova.lm case.names.lm*

[5] confint.lm* cooks.distance.lm* deviance.lm* dfbeta.lm*

[9] dfbetas.lm* drop1.lm* dummy.coef.lm* effects.lm*

[13] extractAIC.lm* family.lm* formula.lm* hatvalues.lm

[17] influence.lm* kappa.lm labels.lm* logLik.lm*

[21] model.frame.lm model.matrix.lm nobs.lm* plot.lm

[25] predict.lm print.lm proj.lm* qqnorm.lm*

[29] qr.lm* residuals.lm rstandard.lm rstudent.lm

[33] simulate.lm* summary.lm variable.names.lm* vcov.lm*

Non-visible functions are asterisked

It is often useful to view a method definition, either by typing the method name
at the command line or, for ‘non-visible’ methods, using getAnywhere:

> anova.lm

> getAnywhere("anova.lme")

For instance, the source code of a function is printed if the function is invoked
without parentheses. Here we discover that the function head (which returns
the first 6 elements of anything) defined in the utils package, is an S3 generic
(indicated by UseMethod) and has several methods; use getAnywhere to retrieve
non-visible function definitions. We use head to look at the first six lines of the
head method specialized for matrix objects.

> utils::head

function (x, ...)

UseMethod("head")

<environment: namespace:utils>

> methods(head)

[1] head.data.frame* head.default* head.ftable* head.function*

[5] head.matrix head.table*

Non-visible functions are asterisked

> head(head.matrix)

1 function (x, n = 6L, ...)

2 {

3 stopifnot(length(n) == 1L)

4 n <- if (n < 0L)

5 max(nrow(x) + n, 0L)

6 else min(n, nrow(x))
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S4 classes and generics are queried in a similar way, as for the complement

generic in the Biostrings package:

> showMethods(complement)

Function: complement (package Biostrings)

x="DNAString"

x="DNAStringSet"

x="MaskedDNAString"

x="MaskedRNAString"

x="RNAString"

x="RNAStringSet"

x="XStringViews"

Methods defined on the DNAStringSet class of Biostrings can be found with

> showMethods(class="DNAStringSet", where=getNamespace("Biostrings"))

Obtaining help on S4 classes and methods requires syntax such as

> class ? DNAStringSet

> method ? "complement,DNAStringSet"

The specification of method and class in the latter must not contain a space
after the comma. The definition of a method can be retrieved as

> selectMethod(complement, "DNAStringSet")

Vignettes Vignettes, especially in Bioconductor packages, provide a more
extensive narrative describing overall package functionality. Use

> browseVignettes("Rsamtools")

to see, in your web browser, vignettes available in the Rsamtools package. Vi-
gnettes usually consist of text with embedded R code, a form of literate pro-
gramming. The vignette can be read as a PDF document, while the R source
code is present as a script file ending with extension .R. The script file can be
sourced or copied into an R session to evaluate exactly the commands used in
the vignette.

2.5 The Bioconductor web site

The Bioconductor web site is at bioconductor.org. Features include:

• Brief introductory work flows.

• A manifest of all Bioconductor packages arranged alphabetically or as
BiocViews.

• Annotation (data bases of relevant genomic information, e.g., Entrez gene
ids in model organisms, KEGG pathways) and experiment data (contain-
ing relatively comprehensive data sets and their analysis) packages.

• Access to the mailing lists, including searchable archives, as the primary
source of help.

15

http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
bioconductor.org
http://bioconductor.org/help/workflows/
http://bioconductor.org/packages/release/bioc/
http://bioconductor.org/packages/release/BiocViews.html
http://bioconductor.org/packages/release/data/annotation/
http://bioconductor.org/packages/release/data/experiment/
http://bioconductor.org/help/mailing-list/


• Course and conference information, including extensive reference material.

• General information about the project.

• Information for package developers, including guidelines for creating and
submitting new packages.

Exercise 2
Scavenger hunt. Spend five minutes tracking down the following information.

a. The package containing the library function.

b. The author of the alphabetFrequency function, defined in the Biostrings
package.

c. A description of the GappedAlignments class.

d. The number of vignettes in the GenomicRanges package.

e. From the Bioconductor web site, instructions for installing or updating
Bioconductor packages.

f. A list of all packages in the current release of Bioconductor.

g. The URL of the Bioconductor mailing list subscription page.

Solution: Possible solutions are found with the following R commands

> ?library

> library(Biostrings)

> ?alphabetFrequency

> class?GappedAlignments

> browseVignettes("GenomicRanges")

and by visiting the Bioconductor web site, e.g., http://bioconductor.org/

install/ (installation instructions), http://bioconductor.org/packages/release/
bioc/ (current software packages), and http://bioconductor.org/help/mailing-list/

(mailing lists).
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3 Ranges and strings

This section introduces two essential ways in which sequence data are manipu-
lated. Ranges describe both aligned reads and features of interest on the genome.
Sets of DNA strings represent the reads themselves and the nucleotide sequence
of reference genomes.

3.1 Reads and genomic features as ranges

Next-generation sequencing data consists of a large number of short reads. These
are, typically, aligned to a reference genome. Basic operations are performed on
the alignment, e.g., how many reads are aligned in a genomic range defined by
nucleotide coordinates (e.g., in the exons of a gene), or how many nucleotides
from all the aligned reads cover a set of genomic coordinates. How is this type
of data, the aligned reads and the reference genome, to be represented in R in
a way that allows for effective computation?

The IRanges, GenomicRanges, and GenomicFeatures Bioconductor pack-
ages provide the essential infrastructure for these operations; we start with the
GRanges class, defined in GenomicRanges.

GRanges Instances of GRanges are used to specify genomic coordinates. Sup-
pose we wished to represent two D. melanogaster genes. The first is located on
the positive strand of chromosome 3R, from position 19967116 to 19973212. The
second is on the minus strand of the X chromosome, with ‘left-most’ base at
18962305, and right-most base at 18962925. The coordinates are 1-based (i.e.,
the first nucleotide on a chromosome is numbered 1, rather than 0), left-most
(i.e., reads on the minus strand are defined to ‘start’ at the left-most coordi-
nate, rather than the 5’ coordinate), and closed (the start and end coordinates
are included in the range; a range with identical start and end coordinates has
width 1, a 0-width range is represented by the special construct where the end
coordinate is one less than the start coordinate).

A complete definition of these genes as GRanges is:

> genes <- GRanges(seqnames=c("3R", "X"),

+ ranges=IRanges(

+ start=c(19967116, 18962305),

+ end=c(19973212, 18962925)),

+ strand=c("+", "-"),

+ seqlengths=c(`3R`=27905053L, `X`=22422827L))

The components of a gene are defined as vectors, e.g., of seqnames, much as one
would define a data.frame. The start and end coordinates are grouped into an
IRanges instance. The optional seqlengths argument specifies the maximum
size of each sequence, in this case the lengths of chromosomes 3R and X in D.
melanogaster. This data is displayed as

> genes

GRanges with 2 ranges and 0 elementMetadata values

seqnames ranges strand |

<Rle> <IRanges> <Rle> |

17

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html


[1] 3R [19967116, 19973212] + |

[2] X [18962305, 18962925] - |

seqlengths

3R X

27905053 22422827

For the curious, the gene coordinates and sequence lengths are derived from the
org.Dm.eg.db for genes with Flybase identifiers FBgn0039155 and FBgn0039155,
using the annotation facilities described in section 6 on annotation.

The GRanges class has many useful methods defined on it. Consult the help
page

> ?GRanges

and package vignettes (especially ‘An Introduction to GenomicRanges’)

> browseVignettes("GenomicRanges")

for a comprehensive introduction. A GRanges instance can be subset, with
accessors for setting, updating, and querying information.

> genes[2]

GRanges with 1 range and 0 elementMetadata values

seqnames ranges strand |

<Rle> <IRanges> <Rle> |

[1] X [18962305, 18962925] - |

seqlengths

3R X

27905053 22422827

> strand(genes)

'factor' Rle of length 2 with 2 runs

Lengths: 1 1

Values : + -

Levels(3): + - *

> width(genes)

[1] 6097 621

> length(genes)

[1] 2

> names(genes) <- c("FBgn0039155", "FBgn0085359")

> genes # now with names
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Figure 2: Ranges

GRanges with 2 ranges and 0 elementMetadata values

seqnames ranges strand |

<Rle> <IRanges> <Rle> |

FBgn0039155 3R [19967116, 19973212] + |

FBgn0085359 X [18962305, 18962925] - |

seqlengths

3R X

27905053 22422827

strand returns the strand information in a compact representation called a
run-length encoding, this is introduced in greater detail below. The ‘names’
could have been specified when the instance was constructed; once named, the
GRanges instance can be subset by name like a regular vector.

As the GRanges function suggests, the GRanges class extends the IRanges
class by adding information about seqname, strand, and other information par-
ticularly relevant to representing ranges that are on genomes. The IRanges class
and related data structures (e.g., RangedData) are meant as a more general de-
scription of ranges defined in an arbitrary space. Many methods implemented
on the GRanges class are ‘aware’ of the consequences of genomic location, for
instance treating ranges on the minus strand differently (reflecting the 5’ orien-
tation imposed by DNA) from ranges on the plus strand.

Operations on ranges The GRanges class inherits many useful methods
from the IRanges class; some of these methods are illustrated here. We use
IRanges to illustrate these operations to avoid complexities associated with
strand and seqname, but the operations are comparable on GRanges. We begin
with a simple set of ranges:

> ir <- IRanges(start=c(7, 9, 12, 14, 22:24),

+ end=c(15, 11, 12, 18, 26, 27, 28))

These are illustrated in the upper left panel of Figure 2.
Methods on ranges can be grouped as follows:

Intra-range methods act on each range independently. These include flank,
narrow, reflect, resize, restrict, shift. An illustration is shift, which
translates each range by the amount specified by the shift argument.
Positive values shift to the right, negative to the left; shift can be a
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vector, with each element of the vector shifting the corresponding element
of the IRanges instance. Here we shift all ranges to the right by 5, with
the result illustrated in the middle panel of Figure 2

> shift(ir, 5)

IRanges of length 7

start end width

[1] 12 20 9

[2] 14 16 3

[3] 17 17 1

[4] 19 23 5

[5] 27 31 5

[6] 28 32 5

[7] 29 33 5

Inter-range methods act on the collection of ranges as a whole. These include
disjoin, reduce, gaps, and range. An illustration is reduce, which reduces
overlapping ranges into a single range, as illustrated in the lower panel of
Figure 2.

> reduce(ir)

IRanges of length 2

start end width

[1] 7 18 12

[2] 22 28 7

coverage is an inter-range operation that calculates how many ranges over-
lap individual positions. Rather than returning ranges, coverage returns a
compressed representation of an integer vector known as Rle (run-length
encoding)

> coverage(ir)

'integer' Rle of length 28 with 12 runs

Lengths: 6 2 4 1 2 3 3 1 1 3 1 1

Values : 0 1 2 1 2 1 0 1 2 3 2 1

The run-length encoding can be interpreted as ‘a run of length 6 of nu-
cleotides covered by 0 ranges, followed by a run of length 2 of nucleotides
covered by 1 range. . . ’.

Between methods act on two (or sometimes more) IRanges instances. These
include intersect, setdiff, union, pintersect, psetdiff, and punion.

countOverlaps and findOverlaps also operate on two sets of ranges. coun-

tOverlaps takes its first argument (the query) and determines how many of
the ranges in the second argument (the subject) each overlaps. The result
is an integer vector with one element for each member of query. findOver-

laps performs a similar operation but returns a more general matrix-like
structure that identifies each pair of query / subject overlap. Both argu-
ments allow some flexibility in the definition of ‘overlap’.
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elementMetadata and metadata The GRanges class (actually, most of the data
structures defined or extending those in the IRanges package) has two additional
very useful data components. The elementMetadata function (or its synonym
values) allows information on each range to be stored and manipulated (e.g.,
subset) along with the GRanges instance. The element metadata is represented
as a DataFrame, defined in IRanges and acting like a standard R data.frame but
with the ability to hold more complicated data structures as columns (and with
element metadata of its own, providing an enhanced alternative to the Biobase
class AnnotatedDataFrame).

> elementMetadata(genes) <-

+ DataFrame(EntrezId=c("42865", "42865"),

+ Symbol=c("kal-1", "CG6173"))

metadata allows addition of information to the entire object. The information is
in the form of a list; any data can be provided.

> metadata(genes) <-

+ list(CreatedBy="Martin Morgan", Date=date())

3.2 Genomic features

The GRanges class is extremely useful for representing simple ranges. Some next-
generation sequence data and genomic features are more hierarchically struc-
tured. A gene may be represented by several exons within it. An aligned read
may be represented by discontinuous ranges of alignment to a reference.

The GRangesList class represents this type of information. It is a list-like
data structure, which each element of the list itself a GRanges instance. The
gene FBgn0039155 contains several exons, and can be represented as a length 1
list, where the element of the list contains a GRanges object with 7 elements:

GRangesList of length 1

$FBgn0039155

GRanges with 7 ranges and 2 elementMetadata values

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr3R [19967117, 19967382] + | 64137 NA

[2] chr3R [19970915, 19971592] + | 64138 NA

[3] chr3R [19971652, 19971770] + | 64139 NA

[4] chr3R [19971831, 19972024] + | 64140 NA

[5] chr3R [19972088, 19972461] + | 64141 NA

[6] chr3R [19972523, 19972589] + | 64142 NA

[7] chr3R [19972918, 19973212] + | 64143 NA

seqlengths

chr3R

27905053

The GRangesList object has methods one would expect for lists (e.g., length,
subsetting). Many of the methods introduced for working with IRanges are also
available, with the method applied element-wise.
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The GenomicFeatures package Many public resources provide annotations
about genomic features. For instance, the UCSC genome browser maintains the
‘knownGenes’ track of established exons, transcripts, and coding sequences of
many model organisms. The GenomicFeatures package provides a way to re-
trieve, save, and query these resources. The underlying representation is as
sqlite data bases, but the data are available in R as GRangesList objects. The
following exercise explores the GenomicFeatures package and some of the func-
tionality for the IRanges family introduced above.

Exercise 3
Use the helper function bigdata and list.files to identify the path to a data
base created by makeTranscriptDbFromUCSC.

Load the saved TranscriptDb object using loadFeatures.
Extract all exon coordinates, extracted by gene, using exonsBy. What is the

class of this object? How many elements are in the object? What does each
element correspond to? And the elements of each element? Use elementLengths

and table to summarize the number of exons in each gene, for instance, how
many single-exon genes are there?

Select just those elements corresponding to flybase gene ids FBgn0002183,
FBgn0003360, FBgn0025111, and FBgn0036449. Use reduce to simplify gene
models, so that exons that overlap are considered ‘the same’.

Solution:

> txdbFile <- list.files(bigdata(), "sqlite", full=TRUE)

> txdb <- loadFeatures(txdbFile)

> ex0 <- exonsBy(txdb, "gene")

> head(table(elementLengths(ex0)))

1 2 3 4 5 6

3182 2608 2070 1628 1133 886

> ids <- c("FBgn0002183", "FBgn0003360", "FBgn0025111", "FBgn0036449")

> ex <- reduce(ex0[ids])

Exercise 4
(Independent) Create a TranscriptDb instance from UCSC, using makeTran-

scriptDbFromUCSC.

Solution:

> txdb <- makeTranscriptDbFromUCSC("dm3", "ensGene")

> saveFeatures(txdb, "my.dm3.ensGene.txdb.sqlite")

22

http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html


3.3 Working with strings

Underlying the ranges of alignments and features are DNA sequences. The
Biostrings package provides tools for working with this data. The essential
data structures are DNAString and DNAStringSet , for working with one or
multiple DNA sequences. The Biostrings package contains additional classes
for representing amino acid and general biological strings. The BSgenome and
related packages (e.g., BSgenome.Dmelanogaster.UCSC.dm3) are used to rep-
resent whole-genome sequences. The following exercise explores these packages.

Exercise 5
The objective of this exercise is to calculate the GC content of the exons of a
single gene, whose coordinates are specified by the ex object of the previous
exercise.

Load the BSgenome.Dmelanogaster.UCSC.dm3 data package, containing the
USCS representation of D. melanogaster genome assembly dm3.

Extract the sequence name of the first gene of ex. Use this to load the
appropriate D. melanogaster chromosome.

Use Views to create views on to the chromosome that span the start and end
coordinates of all exons.

The useR2011 package defines a helper function gcFunction (developed in a
later exercise) to calculate GC content. Use this to calculate the GC content in
each of the exons.

Solution:

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> nm <- as.character(unique(seqnames(ex[[1]])))

> chr <- Dmelanogaster[[nm]]

> v <- Views(chr, start=start(ex[[1]]), end=end(ex[[1]]))

Here is the helper function, available in the useR2011 package, to calculate GC
content:

> gcFunction

function (x)

{

alf <- alphabetFrequency(x, as.prob = TRUE)

rowSums(alf[, c("G", "C")])

}

The subject GC content is

> subjectGC <- gcFunction(v)
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4 Exploring sequence data: short reads and align-
ments

The following sections introduce core tools for working with high-throughput
sequence data. This section focus on the reads and alignments that are the raw
material for analysis. Section 5 addresses statistical approaches to assessing
differential representation in RNA-seq experiments.

4.1 The pasilla data set

As a running example, we use the pasilla data set, derived from [2]. The authors
investigate conservation of RNA regulation between D. melanogaster and mam-
mals. Part of their study used RNAi and RNA-seq to identify exons regulated by
Pasilla (ps), the D. melanogaster ortholog of mammalian NOVA1 and NOVA2.
Briefly, their experiment compared gene expression as measured by RNAseq in
S2-DRSC cells cultured with, or without, a 444bp dsRNA fragment correspond-
ing to the ps mRNA sequence. Their assessment investigated differential exon
use, but our worked example will focus on gene-level differences.

In this section we look at a subset of the ps data, corresponding to reads
obtained from lanes of their RNA seq experiment, and to the same reads aligned
to a D. melanogaster reference genome. Reads were obtained from GEO and
the Short Read Archive (SRA); reads were aligned to D. melanogaster reference
genome dm3 as described in the pasilla experiment data package (this package is
available in the ‘devel’ version of Bioconductor; the devel version will be released
in October, 2011).

4.2 Short reads

Sequencer technologies The Illumina GAII and HiSeq technologies generate
sequencers by measuring incorporation of florescent nucleotides over successive
PCR cycles. These sequencers produce produce output in a variety of formats,
but FASTQ is ubiquitous. Each read is represented by a record of four compo-
nents:

@SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

+SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

The first and third lines (beginning with @ and + respectively) are unique
identifiers. In the sample above the identifier produces by the sequencer typically
includes a machine id followed by colon-separated information on the lane, tile,
x, and y coordinate of the read. The example illustrated here also includes the
SRA accession number, added when the data was submitted to the archive. The
machine identifier could potentially be used to extract information relative to
batch effects. The spacial coordinates (lane, tile, x, y) are often used to identify
optical duplicates (artifacts introduced when the sequencer falsely interprets
reads in close proximity spatial as distinct); spacial coordinates can also be
used during quality assessment to identify spatial artifacts of sequencing, though
these spatial effects are rarely pursued.
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The second and fourth lines of the FASTQ record are the nucleotides and
qualities of each cycle in the read. It is given in 5’ to 3’ orientation as seen by
the sequencer. A letter N is used to signify bases that the sequencer was not able
to call. The fourth line of the FASTQ record encodes the quality (confidence)
of the corresponding base call. The quality score is encoded following one of
several conventions, with the general notion being that letters later in the visible
ASCII alphabet

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

are of lower quality; this is developed further below. Both the sequence and
quality scores may span multiple lines.

Technologies other than Illumina use different formats to represent sequences.
Roche 454 sequence data is generated by ‘flowing’ labeled nucleotides over sam-
ples, with greater intensity corresponding to longer runs of A, C, G, or T. This
data is represented as a series of ‘flow grams’ (a kind of run-length encoding
of the read) in Standard Flowgram Format (SFF). The Bioconductor package
R453Plus1Toolbox has facilities for parsing SFF files, but after quality con-
trol steps the data are frequently represented (with some loss of information) as
FASTQ. SOLiD technologies produce sequence data using a ‘color space’ model.
This data is not easily read in to R, and much of the error-correcting benefit of
the color space model is lost when converted to FASTQ; SOLiD sequences are
not well-handled by Bioconductor packages.

Short reads in R FASTQ files can be read in to R using the readFastq

function from the ShortRead package. Use this function by providing the path
to a FASTQ file. There are sample data files available in the useR2011 package,
each consisting of 1 million reads from a lane of the Pasilla data set.

> fastqDir <- file.path(bigdata(), "fastq")

> fastqFiles <- list.files(fastqDir, full=TRUE)

> fq <- readFastq(fastqFiles[1], withIds=TRUE)

> fq

class: ShortReadQ

length: 1000000 reads; width: 37 cycles

The data are represented as an object of class ShortReadQ (‘short read and
quality’).

> head(sread(fq), 3)

A DNAStringSet instance of length 3

width seq

[1] 37 GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

[2] 37 GTTGTCGCATTCCTTACTCTCATTCGGGAATTCTGTT

[3] 37 GAATTTTTTGAGAGCGAAATGATAGCCGATGCCCTGA

> head(quality(fq), 3)
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class: FastqQuality

quality:

A BStringSet instance of length 3

width seq

[1] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

[2] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[3] 37 IIIIIIIIIIIIIIIIIIIIII'IIIIIGBIIII2I+

> head(id(fq), 3)

A BStringSet instance of length 3

width seq

[1] 58 SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

[2] 57 SRR031724.2 HWI-EAS299_4_30M2BAAXX:5:1:937:1157 length=37

[3] 58 SRR031724.4 HWI-EAS299_4_30M2BAAXX:5:1:1443:1122 length=37

The ShortReadQ class illustrates class inheritance. It extends the ShortRead
class

> getClass("ShortReadQ")

Class "ShortReadQ" [package "ShortRead"]

Slots:

Name: quality sread id

Class: QualityScore DNAStringSet BStringSet

Extends:

Class "ShortRead", directly

Class ".ShortReadBase", by class "ShortRead", distance 2

Known Subclasses: "AlignedRead"

Methods defined on ShortRead are available for ShortReadQ .

> showMethods(class="ShortRead", where=getNamespace("ShortRead"))

For instance, the width can be used to demonstrate that all reads consist of 37
nucleotides.

> table(width(fq))

37

1000000

The alphabetByCycle function summarizes use of nucleotides at each cycle in a
(equal width) ShortReadQ or DNAStringSet instance.

> abc <- alphabetByCycle(sread(fq))

> abc[1:4, 1:8]
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cycle

alphabet [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

A 78194 153156 200468 230120 283083 322913 162766 220205

C 439302 265338 362839 251434 203787 220855 253245 287010

G 397671 270342 258739 356003 301640 247090 227811 246684

T 84833 311164 177954 162443 211490 209142 356178 246101

FASTQ files are getting larger. A very common reason for looking at data
at this early stage in the processing pipeline is to explore sequence quality. In
these circumstances it is often not necessary to parse the entire FASTQ file.
Instead create a representative sample

> sampler <- FastqSampler(fastqFiles[1], 1000000)

> yield(sampler) # sample of 1000000 reads

class: ShortReadQ

length: 1000000 reads; width: 37 cycles

ShortRead contains facilities for quality assessment of FASTQ files. Here we
generate a report from a sample of 1 million reads from each of our files and
display it in a web browser

> qas0 <- Map(function(fl, nm) {

+ fq <- FastqSampler(fl)

+ qa(yield(fq), nm)

+ }, fastqFiles,

+ sub("_subset.fastq", "", basename(fastqFiles)))

> qas <- do.call(rbind, qas0)

> rpt <- report(qas, dest=tempfile())

> browseURL(rpt)

A report from a larger subset of the experiment is available

> rpt <- system.file("GSM461176_81_qa_report", package="useR2011")

> browseURL(rpt)

Exercise 6
Use the helper function bigdata (defined in the useR2011 package) and the
file.path and list.files functions to locate two fastq files from [2] (the files
were obtained as described in the appendix and pasilla experiment data package,
available with the development versions of R and Bioconductor).

Input one of the fastq files using readFastq from the ShortRead package.
Use alphabetFrequency to summarize the GC content of all reads (hint: use

the sread accessor to extract the reads, and the collapse=TRUE argument to
the alphabetFrequency function). Using the helper function gcFunction from
the useR2011 package, draw a histogram of the distribution of GC frequencies
across reads.

Use alphabetByCycle to summarize the frequency of each nucleotide, at each
cycle. Plot the results using matplot, from the graphics package.

As an advanced exercise, and if on Mac or Linux, use the multicore package
and mclapply to read and summarize the GC content of reads in two files in
parallel.
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Solution: Discovery:

> list.files(bigdata())

[1] "bam" "dm3.ensGene.txdb.sqlite"

[3] "fastq"

> fls <- list.files(file.path(bigdata(), "fastq"), full=TRUE)

Input:

> fq <- readFastq(fls[1])

GC content:

> alf0 <- alphabetFrequency(sread(fq), as.prob=TRUE, collapse=TRUE)

> sum(alf0[c("G", "C")])

[1] 0.55

A histogram of the GC content of individual reads is obtained with

> gc <- gcFunction(sread(fq))

> hist(gc)

Alphabet by cycle:

> abc <- alphabetByCycle(sread(fq))

> matplot(t(abc[c("A", "C", "G", "T"),]), type="l")

Advanced (Mac, Linux only): processing on multiple cores.

> library(multicore)

> gc0 <- mclapply(fls, function(fl) {

+ fq <- readFastq(fl)

+ gc <- gcFunction(sread(fq))

+ table(cut(gc, seq(0, 1, .05)))

+ })

> ## simplify list of length 2 to 2-D array

> gc <- simplify2array(gc0)

> matplot(gc, type="s")

Exercise 7
Use quality to extract the quality scores of the short reads. Interpret the
encoding qualitatively.

Convert the quality scores to a numeric matrix, using as. Inspect the numeric
matrix (e.g., using dim) and understand what it represents.

Use colMeans to summarize the average quality score by cycle. Use plot to
visualize this

Solution:

> head(quality(fq))
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class: FastqQuality

quality:

A BStringSet instance of length 6

width seq

[1] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

[2] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[3] 37 IIIIIIIIIIIIIIIIIIIIII'IIIIIGBIIII2I+
[4] 37 IIIIIIIIIIIIIIIIIIIIIIII,II*E,&4HI++B

[5] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII&.$

[6] 37 III.IIIIIIIIIIIIIIIIIII%IIE(-EIH<IIII

> qual <- as(quality(fq), "matrix")

> dim(qual)

[1] 1000000 37

> plot(colMeans(qual), type="b")

4.3 Alignments

Most down-stream analysis of short read sequences is based on reads aligned
to reference genomes. There are many aligners available, including BWA [5, 4],
Bowtie [3], GSNAP, and Illumina’s ELAND; merits of these are discussed in the
literature. There are also alignment algorithms implemented in Bioconductor
(e.g., matchPDict in the Biostrings package, and the Rsubread package); match-
PDict is particularly useful for flexible alignment of moderately sized subsets of
data.

Alignment formats Most main-stream aligners produce output in SAM (text-
based) or BAM format. A SAM file is a text file, with one line per aligned read,
and fields separated by tabs. Here is an example, split into fields.

> fl <- system.file("extdata", "ex1.sam", package="Rsamtools")

> strsplit(readLines(fl, 1), "\t")[[1]]

[1] "B7_591:4:96:693:509"

[2] "73"

[3] "seq1"

[4] "1"

[5] "99"

[6] "36M"

[7] "*"

[8] "0"

[9] "0"

[10] "CACTAGTGGCTCATTGTAAATGTGTGGTTTAACTCG"

[11] "<<<<<<<<<<<<<<<;<<<<<<<<<5<<<<<;:<;7"

[12] "MF:i:18"

[13] "Aq:i:73"

[14] "NM:i:0"
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Table 1: Fields in a SAM record. From http://samtools.sourceforge.net/

samtools.shtml

Field Name Value
1 QNAME Query (read) NAME
2 FLAG Bitwise FLAG, e.g., strand of alignment
3 RNAME Reference sequence NAME
4 POS 1-based leftmost POSition of sequence
5 MAPQ MAPping Quality (Phred-scaled)
6 CIAGR Extended CIGAR string
7 MRNM Mate Reference sequence NaMe
8 MPOS 1-based Mate POSistion
9 ISIZE Inferred insert SIZE
10 SEQ Query SEQuence on the reference strand
11 QUAL Query QUALity
12+ OPT OPTional fields, format TAG:VTYPE:VALUE

[15] "UQ:i:0"

[16] "H0:i:1"

[17] "H1:i:0"

Fields in a SAM file are summarized in Table 1. We recognize from the
FASTQ file the identifier string, read sequence and quality. The alignment is to
a chromosome ‘seq1’ starting at position 1. The strand of alignment is encoded
in the ‘flag’, field. The alignment record also includes a measuring of mapping
quality and a CIGAR string describing the nature of the alignment. In this
case, the CIGAR is 35M, indicating that the alignment consisted of 35 Matches
or mismatches, with no indels or gaps; indels are represented by I and D; gaps
(e.g., from alignments spanning introns) by N.

BAM files encode the same information as SAM files, but in a format that
is more efficiently parsed by software; BAM files are the primary way in which
aligned reads are imported in to R.

Aligned reads in R The readGappedAlignments function from the Genom-
icRanges package reads essential information from a BAM file in to R. The
result is an instance of the GappedAlignments class. The GappedAlignments
class has been designed to allow useful manipulation of many reads (e.g., 20
million) under moderate memory requirements (e.g., 4 GB).

> alnFile <- system.file("extdata", "ex1.bam", package="Rsamtools")

> aln <- readGappedAlignments(alnFile)

> head(aln, 3)

GappedAlignments of length 3

rname strand cigar qwidth start end width ngap

[1] seq1 + 36M 36 1 36 36 0

[2] seq1 + 35M 35 3 37 35 0

[3] seq1 + 35M 35 5 39 35 0

seqlengths
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seq1 seq2

1575 1584

The readGappedAlignments function takes an additional parameter, which, allow-
ing the user to specify regions of the BAM file (e.g., known gene coordinates)
from which to extract alignments.

A GappedAlignments instance is like a data frame, but with accessors as
suggested by the column names. It is easy to query for, e.g., the distribution of
reads aligning to each strand, the width of reads, or the cigar strings

> table(strand(aln))

+ -

1647 1624

> table(width(aln))

30 31 32 33 34 35 36 38 40

2 21 1 8 37 2804 285 1 112

> head(sort(table(cigar(aln)), decreasing=TRUE))

35M 36M 40M 34M 33M 14M4I17M

2804 283 112 37 6 4

Exercise 8
Use bigdata, file.path and list.files to obtain file paths to the BAM files.
These are a subset of the aligned reads, overlapping just four genes.

Input the aligned reads from one file using readGappedAlignments. Explore
the reads, e.g., using table or xtabs to summarize which chromosome and strand
the subset of reads is from.

The object ex created earlier contains coordinates of four genes. Use coun-

tOverlaps to first determine the number of genes an individual read aligns to,
and then the number of uniquely aligning reads overlapping each gene. Since
the RNAseq protocol was not strand-sensitive, set the strand of aln to *.

Write the sequence of steps required to calculate counts as a simple function,
and calculate counts on each file. On Mac or Linux, can you easily parallelize
this operation?

Solution: We discover the location of files using standard R commands:

> fls <- list.files(file.path(bigdata(), "bam"), "bam$", full=TRUE)

> names(fls) <- sub("_.*", "", basename(fls))

Use readGappedAlignments to input data from one of the files, and standard R
commands to explore the data.

> ## input

> aln <- readGappedAlignments(fls[1])

> xtabs(~rname + strand, as.data.frame(aln))

strand

rname + -

chr3L 5402 5974

chrX 2278 2283
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To count overlaps in regions defined in a previous exercise, load the regions.

> data("ex") # from an earlier exercise

Many RNA-seq protocols are not strand aware, i.e., reads align to the plus
or minus strand regardless of the strand on which the corresponding gene is
encoded. Adjust the strand of the aligned reads to indicate that strand is not
known.

> strand(aln) <- "*" # protocol not strand-aware

For simplicity, we are interested in reads that align to only a single gene. Count
the number of genes a read aligns to. . .

> hits <- countOverlaps(aln, ex)

> table(hits)

hits

0 1 2

772 15026 139

and reverse the operation to count the number of times each region of interest
aligns to a uniquely overlapping alignment.

> cnt <- countOverlaps(ex, aln[hits==1])

A simple function for counting reads is

> counter <-

+ function(filePath, range)

+ {

+ aln <- readGappedAlignments(filePath)

+ strand(aln) <- "*"

+ hits <- countOverlaps(aln, range)

+ cnt <- countOverlaps(range, aln[hits==1])

+ names(cnt) <- names(range)

+ cnt

+ }

This can be applied to all files using sapply

> counts <- sapply(fls, counter, ex)

The counts in one BAM file are independent of counts in another BAM file.
This encourages us to count reads in each BAM file in parallel, decreasing the
length of time required to execute our program. On Linux and Mac OS, a
straight-forward way to parallelize this operation is:

> if (require(multicore))

+ simplify2array(mclapply(fls, counter, ex))

The GappedAlignments class inputs only some of the fields of a BAM file,
and may not be appropriate for all uses. In these cases the scanBam function in
Rsamtools provides greater flexibility. The idea is to view BAM files as a kind
of data base. Particular regions of interest can be selected, and the information
in the selection restricted to particular fields. These operations are determined
by the values of a ScanBamParam object, passed as the named param argument
to scanBam.
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Figure 3: GC content in aligned reads

Exercise 9
Consult the help page for ScanBamParam, and construct an object that restricts
the information returned by a scanBam query to the aligned read DNA sequence.
Your solution will use the what parameter to the ScanBamParam function.

Use the ScanBamParam object to query a BAM file, and calculate the GC con-
tent of all aligned reads. Summarize the GC content as a histogram (Figure 3).

Solution:

> param <- ScanBamParam(what="seq")

> seqs <- scanBam(fls[[1]], param=param)

> readGC <- gcFunction(seqs[[1]][["seq"]])

> hist(readGC)
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5 RNA-seq

5.1 Varieties of RNA-seq

RNA-seq experiments typically ask about differences in representation of genes
or other features across experimental groups. The analysis of designed experi-
ments is of course statistical, and hence an ideal task for R. The overall structure
of the analysis, with tens of thousands of features and tens of samples, is also
reminiscent of microarray analysis; one might hope that insights from the mi-
croarray domain will apply, at least conceptually, to the analysis of RNA-seq
experiments.

The most straight-forward RNA-seq experiments quantify abundance of known
gene models. The known models are derived from reference databases, reflect-
ing the accumulated wisdom of the community responsible for the data. The
‘knownGenes’ track of the UCSC genome browser represents one source of data.
It contains, for each gene, the transcripts and exons that are thought through
experimental or computational approaches to exist. The GenomicFeatures pack-
age allows ready access to this information, as we have seen. The data base of
known genes is coupled with high throughput sequence data by counting or
otherwise estimating the number of reads associated with each gene.

A more ambitious approach to RNA-seq attempts to identify novel tran-
scripts. This requires that sequenced reads be assembled into contigs that,
presumably, correspond to expressed transcripts that are then located in the
genome. Transcripts identified in this way may correspond to known transcripts,
to novel organization of known exons (e.g., through alternative splicing), or to
completely novel constructs. We will not address the identification of completely
novel transcripts here, but note that having quantified transcript abundances in
several samples one is still interested in the analysis of designed experiments – do
transcript abundances, novel or otherwise, differ between experimental groups?

Bioconductor packages play a role in several stages of an RNA-seq analysis.
The GenomicRanges infrastructure we have already been exposed to can be ef-
fectively employed to quantify known exon or transcript abundances. Quantified
abundances are in essence a matrix of counts, with rows representing features
and columns samples. The edgeR [6] and DESeq [1] packages facilitate analysis
of this data in the context of designed experiments, and are appropriate when
the questions of interest involve between-sample comparisons of relative abun-
dance. The DEXSeq package extends the approach in edgeR and DESeq to ask
about within-gene, between group differences in exon use, i.e., for a given gene,
do groups differ in their exon use?

5.2 Data preparation

Counting reads aligning to genes An essential step is to arrive at some
measure of gene representation amongst the aligned reads. A straight-forward
and commonly used approach is to count the number of times a read overlaps
exons. Nuance arises when a read only partly overlaps an exon; when two exons
overlap (and hence a read appears to be ‘double counted’); when reads are
aligned with gaps, and the gaps are inconsistent with known exon boundaries;
etc. The countGenomicOverlaps function in the GenomicRanges package provides
facilities for implementing different count strategies, using arguments such as
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type to determine the nature of the exon / read overlap, and resolution to
select strategies for counting reads overlapping multiple subjects. The behavior
of the function is also influenced by whether the queried region is an GRanges
or GRangesList instance.

Software other than R can also be used to summarize count data. An im-
portant point is that the desired input is often raw count data, rather than
normalized (e.g., reads per kilobase of (gene) model per million mapped reads)
values. This is because counts allow information about uncertainty of estimates
to propagate to later stages in the analysis.

Object creation and filtering The following exercise illustrates key steps
in data preparation.

Exercise 10
The user2011 package contains a data set with pre-computed count data. Use
the data command to load it. Create a variable grp to define the groups associ-
ated with each column, using the column names as a proxy for more authorita-
tive metadata.

Create a DGEList object (defined in the edgeR package) from the count matrix
and group information. Calculate relative library sizes using the calcNormFac-

tors function.
A lesson from the microarray world is to discard genes that cannot be infor-

mative (e.g., because of lack of variation). Filter reads to remove those that are
represented at less than 1 per million mapped reads, in fewer than 2 samples.

Use plotMDS on the filtered reads to perform multi-dimensional scaling. In-
terpret the resulting plot.

Solution: Here we load the data (a matrix of counts) and create treatment
group names from the column names of the counts matrix.

> data(counts)

> dim(counts)

[1] 14470 7

> grp <- factor(sub("[1-4].*", "", colnames(counts)),

+ levels=c("untreated", "treated"))

We use the edgeR package, creating a DGEList object from the count and
group data. The calcNormFactors function estimates relative library sizes for
use as offsets in the generalized linear model.

> library(edgeR)

> dge <- DGEList(counts, group=grp)

> dge <- calcNormFactors(dge)

To filter reads, we scale the counts by the library sizes and express the
results on a per-million read scale. We require that the gene be represented at a
frequency of at least 1 read per million mapped in two or more of each sample,
and use this criterion to subset the DGEList instance.
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Figure 4: MDS plot of lanes from the Pasilla data set.

> m <- 1e6 * t(t(dge$counts) / dge$samples$lib.size)

> ridx <- rowSums(m > 1) >= 2

> table(ridx) # number filtered / retained

ridx

FALSE TRUE

6476 7994

> dge <- dge[ridx,]

Multi-dimensional scaling takes data in high dimensional space (in our case,
the dimension is equal to the number of genes in the filtered DGEList instance)
and reduces it to fewer (e.g., 2) dimensions, allowing easier assessment. The
plot is shown in Figure 4; that the samples separate into distinct groups pro-
vides some reassurance that the data differ according to treatment. Nonetheless,
there appears to be considerable heterogeneity within groups. Any guess, per-
haps from looking at the quality report generated early, what the within-group
differences are due to?

> plotMDS.dge(dge)

Using grid search to estimate tagwise dispersion.

5.3 Differential representation

RNA-seq differential representation experiments, like classical microarray ex-
periments, consist of a single statistical design (e.g, comparing expression of
samples assigned to ‘Treatment’ versus ‘Control’ groups) applied to each fea-
ture for which there are aligned reads. While one could naively perform simple
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tests (e.g., t-tests) on all features, it is much more informative to identify impor-
tant aspects of RNAseq experiments, and to take a flexible route through this
part of the work flow. Key steps involve formulation of a model matrix to cap-
ture the experimental design, estimation of a test static to describe differences
between groups, and calculation of a P value or other measure as a statement
of statistical significance.

Experimental design In R, an experimental design is specified with the
model.matrix function. The function takes as its first argument a formula de-
scribing the independent variables and their relationship, and as a second argu-
ment a data.frame containing the (phenotypic) data that the formula describes.
A simple formula might read ~ 1 + grp, which says that the response is a linear
function involving an intercept (1) plus a term encoded in by the variable grp.
If (as in our case) grp is a factor, then the first coefficient (column) of the model
matrix corresponds to the first level of grp, and subsequent terms correspond to
deviations of each level from the first. If grp were numeric rather than factor ,
the formula would represent linear regressions with an intercept. Formulas are
very flexible, allowing representation of models with one, two, or more factors
as main effects, models with or without interaction, and with nested effects.

Exercise 11
To be a more concrete, use the model.matrix function and a formula involving
grp to create the model matrix for our experiment.

Solution: Here is the experimental design; it’s worth discussing with your
neighbor the interpretation of the design instance.

> (design <- model.matrix( ~ grp ))

(Intercept) grptreated

1 1 1

2 1 1

3 1 1

4 1 0

5 1 0

6 1 0

7 1 0

attr(,"assign")

[1] 0 1

attr(,"contrasts")

attr(,"contrasts")$grp

[1] "contr.treatment"

The coefficient (column) labeled ‘Intercept’ corresponds to the first level of
grp, i.e., ‘untreated’. The coefficient ‘grptreated’ represents the deviation of
the treated gropu from untreated. Eventually, we will test whether the second
coefficient is significantly different from zero, i.e., whether samples with a ‘1’ in
the second column are, on average different from samples with a ‘0’. On the one
hand, use of model.matrix to specify experimental design implies that the user
is comfortable with something more than elementary statistical concepts, while
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on the other it provides great flexibility in the type of experiment that can be
analyzed.

Negative binomial error RNA-seq count data are often described by a neg-
ative binomial model. This model includes a ‘dispersion’ parameter that de-
scribes biological variation beyond the expectation under a Poisson model. The
simplest approach estimates a disperssion parameter from all the data. The
estimate needs to be conducted in the context of the experimental design, so
that variability between experimental factors is not mistaken for variability in
counts. The square root of the estimated dispersion represents the coefficient of
variation between biological samples.

> dge <- estimateCommonDisp(dge, design)

> sqrt(dge$common.dispersion)

[1] 0.78

This approach assumes that a common dispersion parameter is shared by all
genes. A different approach, appropriate when there are more samples in the
study, is to estimate a dispersion parameter that is specific to each tag (using
estimateTagwiseDisp in the edgeR package). As another alternative, Anders
and Huber [1] note that dispersion increases as the mean number of reads per
gene decreases. One can estimate the relationship between dispersion and mean
using estimateGLMTrendedDisp in edgeR, using a fitted relationship across all
genes to estimate the dispersion of individual genes. Because in our case sam-
ple sizes (biological replicates) are small, gene-wise estimates of dispersion are
likely imprecise. One approach is to moderate these estimates by calculating a
weighted average of the gene-specific and common dispersion; estimateGLMTag-
wiseDisp performs this calculation, requiring that the user provide the weight a
priori.

Differential representation The final steps in estimating differential repre-
sentation are to fit the full model; to perform the likelihood ratio test comparing
the full model to a model in which one of the coefficients has been removed; and
to summarize, from the likelihood ratio calculation, genes that are most differ-
entially represented. The result is a ‘top table’ whose row names are the Flybase
gene ids used to label the elements of the ex GRangesList .

Exercise 12
Use glmFit to fit the general linear model. This function requires the input data
dge, the experimental design design, and as estimate of dispersion.

Use glmLRT to form the likelihood ratio test. This requires the original data
dge and the fitted model from the previous part of this question. Which coeffi-
cient of the design matrix do you wish to test?

Finally, create a ‘top table’ of differentially represented genes using topTags.

Solution: Here we fit a glm to our data and experimental design, using the
common dispersion estimate.

> fit <- glmFit(dge, design, dispersion=dge$common.dispersion)
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The fit can be used to calculate a likelihood ratio test, comparing the full
model to a reduced version with the second coefficient removed. The second
coefficient captures the difference between treated and untreated groups, and
the likelihood ratio test asks whether this term contributes meaningfully to the
overall fit.

> lrTest <- glmLRT(dge, fit, coef=2)

Here topTags function summarizes results across the experiment.

> (tt <- topTags(lrTest))

Coefficient: grptreated

logConc logFC LR P.Value FDR

FBgn0039155 -9.6 -4.7 20 9.6e-06 0.056

FBgn0085359 -12.3 -4.7 19 1.5e-05 0.056

FBgn0024288 -12.4 -4.7 18 2.1e-05 0.056

FBgn0039827 -10.6 -4.2 17 4.3e-05 0.086

FBgn0034434 -11.4 -4.0 15 1.0e-04 0.165

FBgn0033764 -12.1 3.5 14 1.4e-04 0.188

FBgn0034736 -11.0 -3.5 12 4.6e-04 0.502

FBgn0033065 -13.0 3.3 12 5.1e-04 0.502

FBgn0037290 -12.0 3.1 12 6.2e-04 0.502

FBgn0035189 -11.0 3.1 12 6.3e-04 0.502

As a ’sanity check’, summarize the original data for the first several probes

> sapply(rownames(tt$table)[1:4],

+ function(x) tapply(counts[x,], grp, mean))

FBgn0039155 FBgn0085359 FBgn0024288 FBgn0039827

untreated 1576 118.2 102.5 554

treated 64 4.7 4.3 31
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6 Annotation

6.1 Major types of annotation in Bioconductor

GENE ID 
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Figure 5: Annotation Packages: the big picture

Gene centric AnnotationDbi packages:

• Organism level: e.g. org.Mm.eg.db.

• Platform level: e.g. hgu133plus2.db, hgu133plus2.probes, hgu133plus2.cdf .

• Homology level: e.g. hom.Dm.inp.db.

• System-biology level: GO.db or KEGG.db.

Genome centric GenomicFeatures packages:

• Transcriptome level: e.g. TxDb.Hsapiens.UCSC.hg19.knownGene

• Generic genome features: Can generate via GenomicFeatures

biomaRt:

• Query web-based ‘biomart’ resource for genes, sequence, SNPs, and etc.
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6.2 Organism level packages

An organism level package (aka “org package”) is organized around a central
gene id (e.g. Entrez Gene id) and contains a collection of mappings between
this central id and other kinds of ids (e.g. GenBank or Uniprot accession num-
ber, RefSeq id, etc...). The name of an org package is always of the form
org.<Ab>.<efg>.db (e.g. org.Sc.sgd.db) where <Ab> is a 2-letter abbreviation
of the organism (e.g. Sc for Saccharomyces cerevisiae) and <efg> is an abbre-
viation (in lower-case) describing the type of central gene id (e.g. sgd for gene
ids assigned by the Saccharomyces Genome Database people or eg for Entrez
Gene ids).

The document of reference for using org packages is the How to use the “.db”
annotation packages vignette in the AnnotationDbi package (org packages are
only one type of “.db” annotation packages).

Like almost all the annotation packages in Bioconductor, the “.db” anno-
tation packages are updated every 6 months (i.e. at every new Bioconductor
release).

Exercise 13
What’s the name of the org package for Fly? Load it.

Use ls(’package:<pkgname>’) to display the list of all the symbols defined
in this package. Explore a few of them by looking at their man page, at their
class, and by extracting a few samples from them with sample(map, 5).

Turn a map into a data frame with toTable (use head to only display the
first rows). What are the left keys? What are the right keys?

Most maps can be reversed with revmap. Reverse a map and extract a few
samples from the reversed map.

Note that reversing a map does NOT switch the left and right keys. You
can check this with the Lkeys and Rkeys accessors.

Solution:

> library(org.Dm.eg.db)

> ls('package:org.Dm.eg.db')

[1] "org.Dm.eg" "org.Dm.egACCNUM"

[3] "org.Dm.egACCNUM2EG" "org.Dm.egALIAS2EG"

[5] "org.Dm.egCHR" "org.Dm.egCHRLENGTHS"

[7] "org.Dm.egCHRLOC" "org.Dm.egCHRLOCEND"

[9] "org.Dm.egENSEMBL" "org.Dm.egENSEMBL2EG"

[11] "org.Dm.egENSEMBLPROT" "org.Dm.egENSEMBLPROT2EG"

[13] "org.Dm.egENSEMBLTRANS" "org.Dm.egENSEMBLTRANS2EG"

[15] "org.Dm.egENZYME" "org.Dm.egENZYME2EG"

[17] "org.Dm.egFLYBASE" "org.Dm.egFLYBASE2EG"

[19] "org.Dm.egFLYBASECG" "org.Dm.egFLYBASECG2EG"

[21] "org.Dm.egFLYBASEPROT" "org.Dm.egFLYBASEPROT2EG"

[23] "org.Dm.egGENENAME" "org.Dm.egGO"

[25] "org.Dm.egGO2ALLEGS" "org.Dm.egGO2EG"

[27] "org.Dm.egMAP" "org.Dm.egMAP2EG"

[29] "org.Dm.egMAPCOUNTS" "org.Dm.egORGANISM"

[31] "org.Dm.egPATH" "org.Dm.egPATH2EG"
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[33] "org.Dm.egPMID" "org.Dm.egPMID2EG"

[35] "org.Dm.egREFSEQ" "org.Dm.egREFSEQ2EG"

[37] "org.Dm.egSYMBOL" "org.Dm.egSYMBOL2EG"

[39] "org.Dm.egUNIGENE" "org.Dm.egUNIGENE2EG"

[41] "org.Dm.egUNIPROT" "org.Dm.eg_dbInfo"

[43] "org.Dm.eg_dbconn" "org.Dm.eg_dbfile"

[45] "org.Dm.eg_dbschema"

> org.Dm.egUNIPROT

UNIPROT map for Fly (object of class "AnnDbBimap")

> class(org.Dm.egUNIPROT)

[1] "AnnDbBimap"

attr(,"package")

[1] "AnnotationDbi"

> sample(org.Dm.egUNIPROT, 5)

$`248456`
[1] NA

$`249386`
[1] NA

$`32896`
[1] "Q8SZV7" "Q9VWM1"

$`250382`
[1] NA

$`34939`
[1] "Q9VJM9"

> head(toTable(org.Dm.egUNIPROT))

gene_id uniprot_id

1 30970 Q8IRZ0

2 30970 Q95RP8

3 30971 Q95RU8

4 30972 Q9W5H1

5 30973 P39205

6 30975 Q24312

The left keys are the Entrez Gene ids and the right keys the Uniprot accession
numbers. Note that for all the maps in an org package the left key is always the
central gene id.

> revmap(org.Dm.egUNIGENE)

revmap(UNIGENE) map for Fly (object of class "AnnDbBimap")
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> sample(revmap(org.Dm.egUNIGENE), 5)

$Dm.12274

[1] "37523"

$Dm.6045

[1] "246595"

$Dm.29799

[1] "42606"

$Dm.6489

[1] "33183"

$Dm.12224

[1] "31295"

> identical(Lkeys(org.Dm.egUNIGENE), Lkeys(revmap(org.Dm.egUNIGENE)))

[1] TRUE

Exercise 14
For convenience, lrTest, the DGEGLM object obtained in the previous section
with glmLRT, has been included to the user2011 package. Load it and create
again the ‘top table’ of differentially represented genes with topTags.

Extract the Flybase gene ids from this table and map them to their cor-
responding Entrez Gene id (create a named character vector with names the
Flybase gene ids and values the Entrez Gene ids).

Finally, add 2 columns to the table component of the TopTags object created
previously: one for the Entrez Gene ids and one for their corresponding gene
symbols.

Solution:

> library(org.Dm.eg.db)

> data(lrTest)

> tt <- topTags(lrTest)

> fbids <- rownames(tt$table)

> egids <- unlist(mget(fbids, revmap(org.Dm.egFLYBASE), ifnotfound=NA))

> egids

FBgn0039155 FBgn0039827 FBgn0034434 FBgn0034736 FBgn0035189 FBgn0085359

"42865" "43689" "37219" "37572" "38124" "2768869"

FBgn0033764 FBgn0000071 FBgn0024288 FBgn0037290

NA "40831" "45039" "40613"

Because unlist can do strange things when the list to unlist has duplicated
names, a better way to do this is:
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> fbids <- rownames(tt$table)

> map <- org.Dm.egFLYBASE

> fbids <- intersect(mappedRkeys(map), fbids)

> egids <- as.character(revmap(map)[fbids])

> egids

FBgn0034434 FBgn0034736 FBgn0035189 FBgn0037290 FBgn0000071 FBgn0039155

"37219" "37572" "38124" "40613" "40831" "42865"

FBgn0039827 FBgn0024288 FBgn0085359

"43689" "45039" "2768869"

To add the 2 columns to tt$table, we proceed in 3 steps: (1) merge the
2 mappings in a single data frame anno0, (2) align the rows in anno0 with the
rows in tt$table (by redordering them), and (3) cbind tt$table with the 2 new
columns:

> eg2fb <- toTable(org.Dm.egFLYBASE[egids])

> eg2sym <- toTable(org.Dm.egSYMBOL[egids])

> (anno0 <- merge(eg2fb, eg2sym))

gene_id flybase_id symbol

1 2768869 FBgn0085359 CG34330

2 37219 FBgn0034434 Rgk1

3 37572 FBgn0034736 CG6018

4 38124 FBgn0035189 CG9119

5 40613 FBgn0037290 CG1124

6 40831 FBgn0000071 Ama

7 42865 FBgn0039155 kal-1

8 43689 FBgn0039827 CG1544

9 45039 FBgn0024288 Sox100B

> (anno0 <- anno0[match(rownames(tt$table), anno0$flybase_id), ])

gene_id flybase_id symbol

7 42865 FBgn0039155 kal-1

8 43689 FBgn0039827 CG1544

2 37219 FBgn0034434 Rgk1

3 37572 FBgn0034736 CG6018

4 38124 FBgn0035189 CG9119

1 2768869 FBgn0085359 CG34330

NA <NA> <NA> <NA>

6 40831 FBgn0000071 Ama

9 45039 FBgn0024288 Sox100B

5 40613 FBgn0037290 CG1124

> anno <- cbind(tt$table, anno0[ , c("gene_id", "symbol")])
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A Appendix: data retrieval

The following script was used to retrieve a portion of the Pasilla data set from
the short read archive. The data is very large; extraction relies on installation
of the SRA SDK, available from the Short Read Archive.

> library(RCurl)

> srasdk <- "/home/mtmorgan/bin/sra_sdk-2.0.1" # local installation

> sra <- "ftp://ftp-trace.ncbi.nih.gov/sra/sra-instant/reads/ByExpt/sra"

> expt <- "SRX/SRX014/SRX014458/"

> url <- sprintf("%s/%s", sra, expt)

> acc <- strsplit(getURL(url, ftplistonly=TRUE), "\n")[[1]]

> urls <- sprintf("%s%s/%s.sra", url, acc, acc)

> for (fl in urls)

+ system(sprintf("wget %s", fl), wait=FALSE, ignore.stdout=TRUE)

> app <- sprintf("%s/bin64/fastq-dump", srasdk)

> for (fl in file.path(wd, basename(urls)))

+ system(sprintf("%s %s", app, fl), wait=FALSE)
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