REvolution
computing
We do the math

Parallel Computing in R

BioC 2009, Seattle, July 2009

Evolutio

=7 ";-_\\ ,‘

Who are R

n Computing?

REvolution Computing:

— |s a commercial open-source company, founded in 2007

— Provides services and products based on R
* The “Red Hat”® for R

— Produces free and subscription-based high-performance,
enhanced distributions of R

— Offers support, training, validation and other services
around R

— Has expertise in high-performance and distributed
computing

— |Is a financial and technical contributor to the R community
— Has operations in New Haven, Seattle, and San Francisco

REvolution ;
computing

The People of REvolution

HEIre™

Martin Schultz, Chief Scientific Officer (Arthur K Watson Professor of Computer
Science, Yale University; founder of Scientific Computing Associates; research in
algorithm design, parallel programming environments and architectures)

David Smith, Director of Community & R blogger (co-author of An Introduction to
R, ESS)

Bryan Lewis , Ambassador of Cool (aka Director of Systems Engineering; applied
math interests in numerical analysis of inverse problems; former CEO of
Rocketcalc)

Danese Cooper, Open Source Diva (board of directors, Open Source Initiative;
member, Apache Software Foundation; advisory board, Mozilla.org; previously
senior director, open source strategies at Intel and Sun)

Steve Weston, Senior Research Scientist, Director of Engineering (REvolution and
Scientific Computing Associates; development of NetWorkSpaces — parallel
programming with R, Python, Ruby, and Matlab — Network Linda, Paradise, and
Piranha).

Jay Emerson, Dept Statistics, Yale University (author of bigmemory package)

REvolution ;
computing

What is REvolution R?

.\";,

* REvolution R is the free distribution of R
— Optimized for speed
— Uses multiple CPUs/cores for performance
— For Windows and MacOS (soon: Ubuntu)
— Support via community forums

* REvolution R Enterprise is our enhanced, subscription-
only distribution of R

— Telephone/email support from real R experts
— Suitable for use in regulated/validated environments

— Includes proprietary ParallelR packages for reliable
distributed computing with R
* on clusters or in the cloud

— Supported on 64-bit Windows, Linux

REvolution ;
computing

Supporting the R Community
YL B i

75

We are an open source company supporting the R community:

Benefactor of R Foundation
Financial supporter of R conferences and user groups
New functionality developed in core R to contributed under
GPL
- 64-bit Windows support
- Step-debugging support
R Evangelism

“Revolutions” Blog: blog.revolution-computing.com
Daily News about R, statistics, and open-source

REvolution ;
computing

In today’s lab:

i - ’¢ Ny

Introduction to Parallel Processing

Multi-Threaded Processing
— Computing on the GPU

Iterators

The foreach loop

Using multiple cores: SMP
Cluster Computing
Multi-Stratum parallelism
Q & A / Exercises

REvolution ;
computing

Getting Started

.\\"\.. /) " y

e R2.10.x, and 2.9.x on Windows:

install.packages ("foreach", type="source")

install.packages ("i1terators", type="source")

* R 2.9.x, Mac/Linux only:
install.packages ("doMC")
require (doMC)

 Windows/Mac:
— Install REvolution R Enterprise 2.0 (R 2.7.2)
requlire (doNWS)

REvolution ;
computing

Introduction to Parallel
Processing

With an aside to High-Performance Computing

¢ REvolution ;
computing

We do the math

What is High-Performanc

¥

Images copyright Cray, Xlinix, NVIDIA from upper-left, clockwise. RE‘Q‘;L‘;’J;’,,‘; ;

We do the math

What is High-Performance Computing (HPC)?

. These da s, HPCis
requentg associated
with COTS ¢ uster
IJ)outmg and with
SIM vectorization and
pipelining (GPUs)

* Commodity, off the shelf

* New: cloud computing

Image from ncbr.sdsc.edu

amazon % Eucalyptus
webservices™ Syste ms

REvolution ;
computing

What is High-Performance Computing (HPC)?

¥

e HPCis often concerned with User Address Space
. o Thread 2 | routine2() varl
multi-processing (parallel stack sz
processing), the codrdination of [.i; [etinero v
stack NaLe /
multiple, simultaneously
[
. main() yd
running (sub)programs | essen7
routine /
— Threads
data | oo
— Processes ,
eap
— Clusters
Image Copyright Lawrence Livermore National Lab RE‘:gL‘gj&g ;

We do the math

What is High-Perfo

i .

HPC often involves effectively managing huge data sets

— Parallel file systems (GPFS, PVFS2, Lustre, GFS2, S3...)
— Parallel data operations (map-reduce)
— Working with high-performance databases

— bigmemory package in R

-
-’
-
=
-
-
-
el

Image Copyright HP (a multi-petabyte storage system) REvolution i

computing

A Taxonomy of Parallel Processing

7 o &

* Multi-node / cluster / cloud computing (heavyweight processes)
— Memory distributed across network
— Examples: foreach, SNOW, Rmpi, batch processing

e Multi-core / multi-processor computing (heavyweight processes)
— SMP: Symmetric Multi-Processing
— Independent memory in shared space
— Naturally scales to multi-node processing
— Examples: multicore (Windows/Unix), foreach

 Multi-threaded processing (lightweight processes)
— Usually shared memory
— Harder to scale out across networks

— Examples: threaded linear-algebra libraries for R (ATLAS, MKL); GPU
processors (CUDA/NVIDIA ; ct/INTEL)

REvolution ;
computing

Multi-Threaded Processing

14 REvolution ;
computing

We do the math

What is threaded programming?

'\,A'.

* Athread is a kind of process that shares
address space with its parent process

* Created, destroyed, managed and
synchronized in C code
— POSIX threads

— OpenMP threads
e Fast, but difficult to program

— Easy to overwrite variables

— Need to worry about synchronization

REvolution ;
computing

Exploiting threads with R

i ,A' B 4

* R links to BLAS (Basic Linear Algebra
Subprograms) libraries for efficient vector/
matrix operations

* Linux: Need to compile and link with threaded
BLAS (ATLAS)

 Windows/Mac: REvolution R linked to Intel
MKL libraries, uses as many threads as cores

— Many higher-level operations optimized as well

* MacOS: CRAN binary uses veclib BLAS
— threaded, pretty good performance

REvolution ;
computing

REvolution R SVD Performance

Multi-Threaded

Processing
¥, '

Speedup x R-2.7.2

R-2.7.2

Revolution R Performance

RPro single thread RPro 2 threads

RPro 4 threads

Example data matrix

150,000 X 500
fast.svd

Quad-core Intel Core2 CPU,
Windows Vista 64-bit Workstation

17 REvolution ;
computing

We do the math

GPU Programming

12 REvolution ;
computing

We do the math

What is a GPU?

”.\ ,‘. } : .)

Dedicated processing chip (or card) dedicated to
fast floating-point operations

— Originally for 3-D graphics calculations

Highly parallel: 100’s of processors on a single
chip, capable of running 1000’s of threads

Usually includes dedicated high-speed RAM,
accessible only by GPU

— Need to transfer data in/out

Programmed directly using custom C dialect /
compilers

> 90% of new desktops/laptops have an
integrated GPU

REvolution ;
computing

GeForce 8800GT

o

/4

Launched Oct 29, 2007
512 Mb of 256-bit memory
128 processors

512 simultaneous threads

< S200

Download NVIDIA CUDA Tools:

— http://www.nvidia.com/object/cuda home.html

Tutorial
— http://www.ddj.com/architect/207200659

REvolution ;
computing

Performance C

omparison
A 7 M

= Convolve 2 vectors of length 2222
= 60 Mb of data
* Quad dual-core processor / GPU

Method ____________|Time (seconds)

Base R convolve function 9.89
AMD ACML 6.29
FFTW (8 threads) 3.75

CUDA on GeForce 8800GT 1.88 (single precision)

21 REvolution ;
computing

We do the math

Introducing Iterators

22 REvolution ;
computing

We do the math

You are the teacher of 10 grade-school pupils.

Class project: draw each of the 52 playing
cards as a poster.

Each child has supplies of poster paper and
crayons, but requires a reference card to copy.

How to organize the pupils?

/EQ‘N

>
*

e T4
{ ‘g g ,

P L4
REvolution
computing

Ilterators

> require (1terators)

Generalized loop variable

Value need not be atomic
— Row of a matrix

— Random data set

— Chunk of a data file

— Record from a database

Create with: iter
Get values with: nextElem
Used as indexing argument with foreach

REvolution ;
computing

Iterators are memory friend
s U C Y3)

ly
* Allow data to be split into manageable pieces

on the fly

* Helps alleviate problems with processing large
data structures

* Pieces can be processed in parallel

REvolution ;
computing

It

erators act as adaptors
~ D S8

e Allows your data to be processed by foreach
without being converted

e Can iterate over matrices and data frames by
row or by column:

1t <- 1ter (Boston, by="row")
nextElem(1t)

REvolut

ion ;
computing

Numeric lterator

> 1 <- 1ter(1l:3)
> nextElem (1)
[1] 1

> nextElem (1)
[1] 2

> nextElem (1)
(1] 3

> nextElem (1)

FError: Stoplteration

REvolution ;
computing
We do the math

Long sequences

-’4’

> 1 <= 1count (1le9)
> nextElem (1)

[1] 1
> nextElem (1)
[1] 2
> nextElem (1)
[1] 3
> nextElem (1)
[1] 4
> nextElem (1)
[1] S

REvolution ;
computing
We do the math

Matrix dimensions

o C T,

> M <- matrix(l:25,ncol=bh)
> r <- iter (M,by="row")
> nextElem(r)

[, 0,21 [,3] [,4] [,5]
[1,] 1 0 11 16 21
> nextElem(r)

[,1] [,2] [,31 [,4] [,3]
(1,] 2 7 12 17 22
> nextkElem (r)

L, 0,20 [,31 [,4] [,5]
(1,] 3 8 13 18 23

REvolution ;
computing
We do the math

Data File

\‘1

> rec <- iread.table("MSFT.csv",sep=",", header=T, row.names=NULL)
> nextElem(rec)

MSFT.Open MSFT.High MSFT.Low MSFT.Close MSFT.Volume MSFT.Adjusted
1 29.91 30.25 29.4 29.86 76935100 28.73
> nextElem(rec)

MSFT.Open MSFT.High MSFT.Low MSFT.Close MSFT.Volume MSFT.Adjusted
1 29.7 29.97 29.44 29.81 45774500 28.68
> nextElem(rec)

MSFT.Open MSFT.High MSFT.Low MSFT.Close MSFT.Volume MSFT.Adjusted
1 29.63 29.75 29.45 29.64 44607200 28.52
> nextElem(rec)

MSFT.Open MSFT.High MSFT.Low MSFT.Close MSFT.Volume MSFT.Adjusted
1 29.65 Sl 29.53 25993 50220200 28.8

30 REvolution ;
computing

We do the math

e \\\; 4

Database

> library (RSQLite)
> m <- dbDriver ('SQLite')
> con <- dbConnect (m, dbname="arrests")
> 1t <- 1query(con, 'select * from USArrests', n=10)
> nextElem(it)

Murder Assault UrbanPop Rape
Alabama 13.2 236 58 21.2
Alaska 10.0 263 48 44.5
Arizona 8.1 294 80 31.0
Arkansas 8.8 190 50 19.5
California 9.0 276 91 40.6
Colorado 7.9 204 78 38.77
Connecticut 3.3 110 77 11.1
Delaware 5.9 238 72 15.8
Florida 15.4 335 80 31.9
Georgila 17.4 211 60 25.8

31 REvolution ;
computing

We do the math

Infinite & Irregular sequences

Pavd

I %
ilprime <- function() {
lastPrime <- 1
nextEl <- function() {

lastPrime <<- as.numeric (nextprime (lastPrime))

lastPrime

}

1t <= list (nextElem=nextEl)

class(it) <- c('abstractiter',6 '"iter')
1t}

> require (gmp)
> p <- iprime ()
> nextElem (p)

[1] 2
> nextElem (p)
[1] 3

REvolution ;
computing

We do the math

Looping with foreach

33 REvolution ;
computing

We do the math

Looping with foreach

foreach (var=iterator) %$dopar% { statements }
» FEvaluate statements until iterator terminates
= gstatements will reference variable var

= Values of { .. } block collected into a list

= Runs sequentially (by default) (or force with $do%)

REvolution ;
computing

> foreach (j=1:4) %dopar% sqgrt (7j)

[1] 1.414214

[[3]]
[1] 1.732051

Warning message:
executing %sdopar%s sequentially: no
parallel backend registered /qé%

35 REvolution
computing
We do the math

Combining Results

> foreach(j=1:4, .combine=c) %dopar$% sqgrt(j)
[1] 1.000000 1.414214 1.732051 2.000000

> foreach(j=1:4, .combine='+’, .1norder=FALSE)
$dopars sqgrt (3)

[1] 6.146264

» When order of evaluation is unimportant, use . inorder=FALSE

36 REvolution ;
computing

We do the math

Referencing global variables

> z <- 2

> f <- function (x) sgrt (x + z)

> foreach (J=1:4, .combine='+"') %dopars f(])
[1] 8.417609

» foreach automatically inspects code and ensures unbound objects are
propagated to the evaluation environment

37 REvolution ;
computing

We do the math

\

ested foreach execution

e foreach operations can be nested using

% : % operator

* Allows parallel execution across multiple loops
levels, “unrolling” the inner loops

©)

foreach (1=1:3, .combine=cbind) $%:%
foreach (j3j=1:3, .combine=c) %dopars
(1 + J)

REvolution ;
computing

Speeding up code with foreach

SMP Processing

39 REvolution ;
computing

We do the math

Quick review of parallel and distributed c

omputing in R

= ."'-.\- "‘ ™ : \. . : §‘

 NetWorkSpaces (package nws; SMP, distributed)
— GPL, also commercially supported by REvolution Computing
— Very cross-platform, distributed shared-memory paradigm
— Fault-tolerant

MultiCore (package multicore; SMP only)
— Linux / MacOS (requires POSIX)
— Uses fork to create new R processes
Rmpi (package Rmpi; SMP, distributed)
— Fine-grained control allows very high-performance calculations
— Can be tricky to configure
— Limited Windows and heterogeneous cluster support
SNOW (package snow; SMP, distributed*)
— Limited Windows support (*single machine only)
— Meta-package: supports MPI, sockets, NWS, PVM

REvolution ;
computing

Parallel backends for foreach
25N Nt X2

e

* %dopar% behaviour depends on current
“registered” parallel backend

* Modular parallel backends

* register
* register
* register

DOSEQ (default)
DoNWS (NetWorkSpaces)

DoMC (multicore, MacOS/Windows)

* From Terminal/ESS only! (R.app GUI will crash.)
* registerDoSNOW

* registerDoORMPI

REvolution ;
computing

Getting Started: Multi-core Processing

S 4 | ’A 2

e R 2.10.x — wait until official release

* R2.9.x

require (doMC)

reglsterDoMC (cores=2)
 REvolution R Enterprise

requlire (doNWS)

s <- sleigh (workerCount=2)

registerDoNWS ()

42 REvolution ;
computing

A simple simulation:

birthday <- function(n) {
ntests <- 1000
pop <- 1:365
anydup <- function (i)
any (duplicated/(
sample (pop, n, replace=TRUE)))
sum (sapply (seg(ntests), anydup)) / ntests

x <- foreach (3j=1:100) %dopar$ birthday (3j)

43 REvolution ;
computing

We do the math

Birthday Example - timings
s ’ \ : AW

Dual-core 2.4GHz Intel MacBook:

system. time {

x <- foreach (3=1:100) %dopar%s
birthday (73)

} # Elapsed

reglisterDoSEQ () 41s
registerDoMC () # 2 cores 28s
registerDoNWS () # 2 workers 26s(*)

44 REvolution ;
computing
We do the math

Birthday Simulation: Multicore / NWS

>
>

7} Y‘ L_]

x <- foreach (j=1:100) %dopar% birthday (j)

plot(1:100, unlist(x),type="1")

unlist(x)

1.0

0.8

06

0.4

0.2

0.0
|

0 20 40 60 80

1:100

100

REvolution ;
computing

We do the math

Using clusters with
NetworkSpaces

46 REvolution ;
computing

We do the math

Setting Up a Cluster
= eI

7 T

1. Identify machines to form nodes on cluster
— Easiest with Linux / MacOS
— Possible with Windows

2. Select a server machine
— OK for this one to be on Windows

3. Make sure passwordless ssh enabled on each
worker node

— ssh nodename Revo —--version should
work

REvolution ;
computing

Setting up a cluster, part 2

.\‘_. /) .

4. Login to server, start REvolution R

5. Create a sleigh

require (doNWS)

s <- sleilgh (nodeList=c (
rep("localhost", ?2),
rep ("thor", 8),
rep("lok1i",4)),

launch=sshcmd)
reglsterDoNWS (s)

6. Use foreach as before
7. (optional) use joinSleigh to add new nodes

REvolution ;
computing

Parallel Random Forest

o C T,

a simple parallel random forest

library (randomForest)

X <— matrix (runif (500), 100)

y <= gl(2, 50)

wc <- 2

n <- ceiling (1000 / wc)

registerDoNWS (s)

foreach (ntree=rep(n, wc), .combine=combine,
.packages='randomForest') %dopars

randomForest (x, y, ntree=ntree)

* Easier: randomShrubberyNWS ()

45 REvolution ;
computing

We do the math

Converting existing code

* Convert these loops to foreach:

— for: make body return iteration value
and . combine

—apply:use 1ter (X, by="row”)
and .combine
* Oriapply (X, 1)

— lapply:use 1ter (mylist)

50 REvolution ;
computing

ppiStats Example

D A

e Sequential:

bpMatsl <- lapply(bplList, function(x) {
bpMatrix (x, symMat = TRUE, homodimer = FALSE,
baitAsPrey = FALSE, unWeighted = FALSE,
onlyRecip = FALSE, baitsOnly = FALSE)

})

* Parallel:
bpMatsl <- foreach (x=iter (bpList),
.packages = "ppiStats") S%dopar%s {
bpMatrix (x, sysMat = TRUE, homodimer = FALSE,
baitAsPrey = FALSE, unWeighted = FALSE,
onlyRecip = FALSE, baitsOnly = FALSE)

REvolution ;
computing

ppiStats Example
N k< .

e Sequential:

bpGraphs <- lapply(bpMatsl, function (x) {
genBPGraph (x, directed = TRUE, bp = FALSE)

})

* Parallel:
bpGraph <- foreach (x=i1ter (bpMatl),
.packages = "ppiStats") S%Sdopars {
genBPGraph (x, directed = TRUE, bp = FALSE)

52 REvolution ;
computing

We do the math

Excercise

- .

I”

* Find other “embarassingly paralle
BioConductor examples, and convert to
parallel with foreach.

53 REvolution ;
computing

We do the math

Multi-Stratum Parallelism

54 REvolution ;
computing

We do the math

An example of explicit multi-stratum||ism

l foreach (iterator) %dopar% {tasks} \

CLUSTER
l foreach ... \ l foreach ... \

SMP l task \l task \l task \l task \

55 REvolution ;
computing

We do the math

Multi-stratum template: NWS / Multicore

NS N ’4

require ("doNWS")
require ("foreach")
require ("doMC")

s <- sleigh (nodelist=c(rep("localhost",?2),
rep ("bladeserver", 8))
registerDoNWS (s)

foreach (iterator 1,
.packages=c ("foreach", "doMC")) sdopar%s

registerDoMC ()
foreach (iteratorj) Sdopars {
tasks...

56 REvolution ;
computing

We do the math

Pitfalls to avoid

/' ’A 4

* Sequential vs Parallel Programming

e Random Number Generation
— library (sprngNwSs)

— sleligh (workerCount=8,
rngType='‘sprngLFG’)

 Node failure
* Cosmic Rays

REvolut

ion ;
computing

Conclusions

N
1 -

e Parallel computing is easy!
* Write loops with foreach / %dopar%

— Works fine in a single-processor environment

— Third-party users can register backends for
multiprocessor or cluster processing

— Speed benefits without modifying code

e Easy performance gains on modern laptops /
desktops

* Expand to clusters for meaty jobs

REvolution ;
computing

Thank You!

.\‘*“\-- 7} i 2§ &

e David Smith
— david@revolution-computing.com, @revodavid

* REvolution Computing

— www.revolution-computing.com

e Revolutions, the R blog

— blog.revolution-computing.com

 Downloads:
— Slides: http://tinyurl.com/R-Bioc-slides
— Script: http://tinyurl.com/R-Bioc-script

REvolution ;
computing

