# Grun mouse HSC (CEL-seq) ## Introduction This performs an analysis of the mouse haematopoietic stem cell (HSC) dataset generated with CEL-seq [@grun2016denovo]. Despite its name, this dataset actually contains both sorted HSCs and a population of micro-dissected bone marrow cells. ## Data loading ``` r library(scRNAseq) sce.grun.hsc <- GrunHSCData(ensembl=TRUE) ``` ``` r library(AnnotationHub) ens.mm.v97 <- AnnotationHub()[["AH73905"]] anno <- select(ens.mm.v97, keys=rownames(sce.grun.hsc), keytype="GENEID", columns=c("SYMBOL", "SEQNAME")) rowData(sce.grun.hsc) <- anno[match(rownames(sce.grun.hsc), anno$GENEID),] ``` After loading and annotation, we inspect the resulting `SingleCellExperiment` object: ``` r sce.grun.hsc ``` ``` ## class: SingleCellExperiment ## dim: 21817 1915 ## metadata(0): ## assays(1): counts ## rownames(21817): ENSMUSG00000109644 ENSMUSG00000007777 ... ## ENSMUSG00000055670 ENSMUSG00000039068 ## rowData names(3): GENEID SYMBOL SEQNAME ## colnames(1915): JC4_349_HSC_FE_S13_ JC4_350_HSC_FE_S13_ ... ## JC48P6_1203_HSC_FE_S8_ JC48P6_1204_HSC_FE_S8_ ## colData names(2): sample protocol ## reducedDimNames(0): ## mainExpName: NULL ## altExpNames(0): ``` ## Quality control ``` r unfiltered <- sce.grun.hsc ``` For some reason, no mitochondrial transcripts are available, and we have no spike-in transcripts, so we only use the number of detected genes and the library size for quality control. We block on the protocol used for cell extraction, ignoring the micro-dissected cells when computing this threshold. This is based on our judgement that a majority of micro-dissected plates consist of a majority of low-quality cells, compromising the assumptions of outlier detection. ``` r library(scuttle) stats <- perCellQCMetrics(sce.grun.hsc) qc <- quickPerCellQC(stats, batch=sce.grun.hsc$protocol, subset=grepl("sorted", sce.grun.hsc$protocol)) sce.grun.hsc <- sce.grun.hsc[,!qc$discard] ``` We examine the number of cells discarded for each reason. ``` r colSums(as.matrix(qc)) ``` ``` ## low_lib_size low_n_features discard ## 465 482 488 ``` We create some diagnostic plots for each metric (Figure \@ref(fig:unref-hgrun-qc-dist)). The library sizes are unusually low for many plates of micro-dissected cells; this may be attributable to damage induced by the extraction protocol compared to cell sorting. ``` r colData(unfiltered) <- cbind(colData(unfiltered), stats) unfiltered$discard <- qc$discard library(scater) gridExtra::grid.arrange( plotColData(unfiltered, y="sum", x="sample", colour_by="discard", other_fields="protocol") + scale_y_log10() + ggtitle("Total count") + facet_wrap(~protocol), plotColData(unfiltered, y="detected", x="sample", colour_by="discard", other_fields="protocol") + scale_y_log10() + ggtitle("Detected features") + facet_wrap(~protocol), ncol=1 ) ```
Distribution of each QC metric across cells in the Grun HSC dataset. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-hgrun-qc-dist)Distribution of each QC metric across cells in the Grun HSC dataset. Each point represents a cell and is colored according to whether that cell was discarded.

## Normalization ``` r library(scran) set.seed(101000110) clusters <- quickCluster(sce.grun.hsc) sce.grun.hsc <- computeSumFactors(sce.grun.hsc, clusters=clusters) sce.grun.hsc <- logNormCounts(sce.grun.hsc) ``` We examine some key metrics for the distribution of size factors, and compare it to the library sizes as a sanity check (Figure \@ref(fig:unref-hgrun-norm)). ``` r summary(sizeFactors(sce.grun.hsc)) ``` ``` ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.027 0.290 0.603 1.000 1.201 16.433 ``` ``` r plot(librarySizeFactors(sce.grun.hsc), sizeFactors(sce.grun.hsc), pch=16, xlab="Library size factors", ylab="Deconvolution factors", log="xy") ```
Relationship between the library size factors and the deconvolution size factors in the Grun HSC dataset.

(\#fig:unref-hgrun-norm)Relationship between the library size factors and the deconvolution size factors in the Grun HSC dataset.

## Variance modelling We create a mean-variance trend based on the expectation that UMI counts have Poisson technical noise. We do not block on sample here as we want to preserve any difference between the micro-dissected cells and the sorted HSCs. ``` r set.seed(00010101) dec.grun.hsc <- modelGeneVarByPoisson(sce.grun.hsc) top.grun.hsc <- getTopHVGs(dec.grun.hsc, prop=0.1) ``` The lack of a typical "bump" shape in Figure \@ref(fig:unref-hgrun-var) is caused by the low counts. ``` r plot(dec.grun.hsc$mean, dec.grun.hsc$total, pch=16, cex=0.5, xlab="Mean of log-expression", ylab="Variance of log-expression") curfit <- metadata(dec.grun.hsc) curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2) ```
Per-gene variance as a function of the mean for the log-expression values in the Grun HSC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the simulated Poisson-distributed noise.

(\#fig:unref-hgrun-var)Per-gene variance as a function of the mean for the log-expression values in the Grun HSC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the simulated Poisson-distributed noise.

## Dimensionality reduction ``` r set.seed(101010011) sce.grun.hsc <- denoisePCA(sce.grun.hsc, technical=dec.grun.hsc, subset.row=top.grun.hsc) sce.grun.hsc <- runTSNE(sce.grun.hsc, dimred="PCA") ``` We check that the number of retained PCs is sensible. ``` r ncol(reducedDim(sce.grun.hsc, "PCA")) ``` ``` ## [1] 9 ``` ## Clustering ``` r snn.gr <- buildSNNGraph(sce.grun.hsc, use.dimred="PCA") colLabels(sce.grun.hsc) <- factor(igraph::cluster_walktrap(snn.gr)$membership) ``` ``` r table(colLabels(sce.grun.hsc)) ``` ``` ## ## 1 2 3 4 5 6 7 8 9 10 11 12 ## 259 148 221 103 177 108 48 122 98 63 62 18 ``` ``` r short <- ifelse(grepl("micro", sce.grun.hsc$protocol), "micro", "sorted") gridExtra:::grid.arrange( plotTSNE(sce.grun.hsc, colour_by="label"), plotTSNE(sce.grun.hsc, colour_by=I(short)), ncol=2 ) ```
Obligatory $t$-SNE plot of the Grun HSC dataset, where each point represents a cell and is colored according to the assigned cluster (left) or extraction protocol (right).

(\#fig:unref-hgrun-tsne)Obligatory $t$-SNE plot of the Grun HSC dataset, where each point represents a cell and is colored according to the assigned cluster (left) or extraction protocol (right).

## Marker gene detection ``` r markers <- findMarkers(sce.grun.hsc, test.type="wilcox", direction="up", row.data=rowData(sce.grun.hsc)[,"SYMBOL",drop=FALSE]) ``` To illustrate the manual annotation process, we examine the marker genes for one of the clusters. Upregulation of _Camp_, _Lcn2_, _Ltf_ and lysozyme genes indicates that this cluster contains cells of neuronal origin. ``` r chosen <- markers[['6']] best <- chosen[chosen$Top <= 10,] aucs <- getMarkerEffects(best, prefix="AUC") rownames(aucs) <- best$SYMBOL library(pheatmap) pheatmap(aucs, color=viridis::plasma(100)) ```
Heatmap of the AUCs for the top marker genes in cluster 6 compared to all other clusters in the Grun HSC dataset.

(\#fig:unref-heat-hgrun-markers)Heatmap of the AUCs for the top marker genes in cluster 6 compared to all other clusters in the Grun HSC dataset.

## Session Info {-}
``` R version 4.4.1 (2024-06-14) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 24.04.1 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_GB LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: America/New_York tzcode source: system (glibc) attached base packages: [1] stats4 stats graphics grDevices utils datasets methods [8] base other attached packages: [1] pheatmap_1.0.12 scran_1.34.0 [3] scater_1.34.0 ggplot2_3.5.1 [5] scuttle_1.16.0 AnnotationHub_3.14.0 [7] BiocFileCache_2.14.0 dbplyr_2.5.0 [9] ensembldb_2.30.0 AnnotationFilter_1.30.0 [11] GenomicFeatures_1.58.0 AnnotationDbi_1.68.0 [13] scRNAseq_2.19.1 SingleCellExperiment_1.28.0 [15] SummarizedExperiment_1.36.0 Biobase_2.66.0 [17] GenomicRanges_1.58.0 GenomeInfoDb_1.42.0 [19] IRanges_2.40.0 S4Vectors_0.44.0 [21] BiocGenerics_0.52.0 MatrixGenerics_1.18.0 [23] matrixStats_1.4.1 BiocStyle_2.34.0 [25] rebook_1.16.0 loaded via a namespace (and not attached): [1] RColorBrewer_1.1-3 jsonlite_1.8.9 CodeDepends_0.6.6 [4] magrittr_2.0.3 ggbeeswarm_0.7.2 gypsum_1.2.0 [7] farver_2.1.2 rmarkdown_2.28 BiocIO_1.16.0 [10] zlibbioc_1.52.0 vctrs_0.6.5 memoise_2.0.1 [13] Rsamtools_2.22.0 RCurl_1.98-1.16 htmltools_0.5.8.1 [16] S4Arrays_1.6.0 curl_5.2.3 BiocNeighbors_2.0.0 [19] Rhdf5lib_1.28.0 SparseArray_1.6.0 rhdf5_2.50.0 [22] sass_0.4.9 alabaster.base_1.6.0 bslib_0.8.0 [25] alabaster.sce_1.6.0 httr2_1.0.5 cachem_1.1.0 [28] GenomicAlignments_1.42.0 igraph_2.1.1 mime_0.12 [31] lifecycle_1.0.4 pkgconfig_2.0.3 rsvd_1.0.5 [34] Matrix_1.7-1 R6_2.5.1 fastmap_1.2.0 [37] GenomeInfoDbData_1.2.13 digest_0.6.37 colorspace_2.1-1 [40] dqrng_0.4.1 irlba_2.3.5.1 ExperimentHub_2.14.0 [43] RSQLite_2.3.7 beachmat_2.22.0 labeling_0.4.3 [46] filelock_1.0.3 fansi_1.0.6 httr_1.4.7 [49] abind_1.4-8 compiler_4.4.1 bit64_4.5.2 [52] withr_3.0.2 BiocParallel_1.40.0 viridis_0.6.5 [55] DBI_1.2.3 highr_0.11 HDF5Array_1.34.0 [58] alabaster.ranges_1.6.0 alabaster.schemas_1.6.0 rappdirs_0.3.3 [61] DelayedArray_0.32.0 bluster_1.16.0 rjson_0.2.23 [64] tools_4.4.1 vipor_0.4.7 beeswarm_0.4.0 [67] glue_1.8.0 restfulr_0.0.15 rhdf5filters_1.18.0 [70] grid_4.4.1 Rtsne_0.17 cluster_2.1.6 [73] generics_0.1.3 gtable_0.3.6 metapod_1.14.0 [76] BiocSingular_1.22.0 ScaledMatrix_1.14.0 utf8_1.2.4 [79] XVector_0.46.0 ggrepel_0.9.6 BiocVersion_3.20.0 [82] pillar_1.9.0 limma_3.62.0 dplyr_1.1.4 [85] lattice_0.22-6 rtracklayer_1.66.0 bit_4.5.0 [88] tidyselect_1.2.1 locfit_1.5-9.10 Biostrings_2.74.0 [91] knitr_1.48 gridExtra_2.3 bookdown_0.41 [94] ProtGenerics_1.38.0 edgeR_4.4.0 xfun_0.48 [97] statmod_1.5.0 UCSC.utils_1.2.0 lazyeval_0.2.2 [100] yaml_2.3.10 evaluate_1.0.1 codetools_0.2-20 [103] tibble_3.2.1 alabaster.matrix_1.6.0 BiocManager_1.30.25 [106] graph_1.84.0 cli_3.6.3 munsell_0.5.1 [109] jquerylib_0.1.4 Rcpp_1.0.13 dir.expiry_1.14.0 [112] png_0.1-8 XML_3.99-0.17 parallel_4.4.1 [115] blob_1.2.4 bitops_1.0-9 viridisLite_0.4.2 [118] alabaster.se_1.6.0 scales_1.3.0 purrr_1.0.2 [121] crayon_1.5.3 rlang_1.1.4 cowplot_1.1.3 [124] KEGGREST_1.46.0 ```