Cytometry
data with ggplot
library(ggcyto)
dataDir <- system.file("extdata",package="flowWorkspaceData")
3
types of plot constructorggplot
The overloaded fority
methods empower ggplot
to work with all the major Cytometry data structures right away, which allows users to do all kinds of highly customized and versatile plots.
GatingSet
gs <- load_gs(list.files(dataDir, pattern = "gs_manual",full = TRUE))
attr(gs, "subset") <- "CD3+"
ggplot(gs, aes(x = `<B710-A>`, y = `<R780-A>`)) + geom_hex(bins = 128) + scale_fill_gradientn(colours = gray.colors(9))
flowSet/ncdfFlowSet/flowFrame
fs <- gs_pop_get_data(gs, "CD3+")
ggplot(fs, aes(x = `<B710-A>`)) + geom_density(fill = "blue", alpha= 0.5)
gates
gates <- filterList(gs_pop_get_gate(gs, "CD8"))
ggplot(gs, aes(x = `<B710-A>`, y = `<R780-A>`)) + geom_hex(bins = 128) + geom_polygon(data = gates, fill = NA, col = "purple")
ggcyto
ggcyto
constructor along with overloaded +
operator encapsulate lots of details that might be tedious and intimidating for many users.
ggcyto(gs, aes(x = CD4, y = CD8)) + geom_hex(bins = 128) + geom_gate("CD8")
It simplies the plotting by: * add a default scale_fill_gradientn for you * fuzzy-matching in aes
by either detector or fluorochromes names * determine the parent
popoulation automatically * exact and plot the gate object by simply referring to the child
population name
autoplot
Inheriting the spirit from ggplot’s Quick plot
, it further simply the plotting job by hiding more details from users and taking more assumptions for the plot.
flowSet
, it determines geom
type automatically by the number of dim
suppliedGatingSet
, it further skip the need of dim
by guessing it from the children
gate#1d
autoplot(fs, "CD4")
#2d
autoplot(fs, "CD4", "CD8", bins = 64)
autoplot(gs, c("CD4", "CD8"), bins = 64)
It is done by different scales
layers speically designed for cytometry
data(GvHD)
fr <- GvHD[[1]]
p <- autoplot(fr, "FL1-H")
p #raw scale
p + scale_x_logicle() #flowCore logicle scale
p + scale_x_flowJo_fasinh() # flowJo fasinh
p + scale_x_flowJo_biexp() # flowJo biexponential
geom_gate
layerIt hides the complex details pf plotting different geometric shapes
fr <- fs[[1]]
p <- autoplot(fr,"CD4", "CD8") + ggcyto_par_set(limits = "instrument")
#1d gate vertical
gate_1d_v <- openCyto::gate_mindensity(fr, "<B710-A>")
p + geom_gate(gate_1d_v)
#1d gate horizontal
gate_1d_h <- openCyto::gate_mindensity(fr, "<R780-A>")
p + geom_gate(gate_1d_h)
#2d rectangle gate
gate_rect <- rectangleGate("<B710-A>" = c(gate_1d_v@min, 4e3), "<R780-A>" = c(gate_1d_h@min, 4e3))
p + geom_gate(gate_rect)
#ellipsoid Gate
gate_ellip <- gh_pop_get_gate(gs[[1]], "CD4")
class(gate_ellip)
## [1] "ellipsoidGate"
## attr(,"package")
## [1] "flowCore"
p + geom_gate(gate_ellip)
geom_stats
p <- ggcyto(gs, aes(x = "CD4", y = "CD8"), subset = "CD3+") + geom_hex()
p + geom_gate("CD4") + geom_stats()
p + geom_gate("CD4") + geom_stats(type = "count") #display cell counts
axis_inverse_trans
It can display the log
scaled data in the original value
p # axis display the transformed values
p + axis_x_inverse_trans() # restore the x axis to the raw values
It currently only works with GatingSet
.
Optionally you can set limits by instrument
or data
range
p <- p + ggcyto_par_set(limits = "instrument")
p
You can choose between marker
and channel
names (or both
by default)
p + labs_cyto("markers")
ggcyto_par_set
It aggregates the different settings in one layer
#put all the customized settings in one layer
mySettings <- ggcyto_par_set(limits = "instrument"
, facet = facet_wrap("name")
, hex_fill = scale_fill_gradientn(colours = rev(RColorBrewer::brewer.pal(11, "Spectral")))
, lab = labs_cyto("marker")
)
# and use it repeatly in the plots later (similar to the `theme` concept)
p + mySettings
Currently we only support 4
settings, but will add more in future.
as.ggplot
It allows user to convert ggcyto
objects to pure ggplot
objects for further the manipulating jobs that can not be done within ggcyto
framework.
class(p) # may not fully compatile with all the `ggplot` functions
## [1] "ggcyto_GatingSet"
## attr(,"package")
## [1] "ggcyto"
p1 <- as.ggplot(p)
class(p1) # a pure ggplot object, thus can work with all the `ggplot` features
## [1] "gg" "ggplot"
Layout many gate plots on the same page
When plooting a GatingHierarchy
, multiple cell populations with their asssociated gates can be plotted in different panels of the same plot.
gh <- gs[[1]]
nodes <- gs_get_pop_paths(gh, path = "auto")[c(3:9, 14)]
nodes
## [1] "singlets" "CD3+" "CD4" "CD4/38- DR+" "CD4/38+ DR+"
## [6] "CD4/38+ DR-" "CD4/38- DR-" "CD8"
p <- autoplot(gh, nodes, bins = 64)
class(p)
## [1] "ggcyto_GatingLayout"
## attr(,"package")
## [1] "ggcyto"
p
As you see, this generates a special ggcyto_GatingLayout
object which is a container storing multiple ggcyto
objects. You can do more about the plot layout with the helper function ggcyto_arrange
. For example, to arrange it as one-row gtable object
gt <- ggcyto_arrange(p, nrow = 1)
class(gt)
## [1] "gtable" "gTree" "grob" "gDesc"
plot(gt)
or even combine it with other ggcyto_GatingLayout
objects(or any gtable
objects) and print it on the sampe page
p2 <- autoplot(gh_pop_get_data(gh, "CD3+")[,5:8]) # some density plot
p2@arrange.main <- ""#clear the default title
gt2 <- ggcyto_arrange(p2, nrow = 1)
gt3 <- gridExtra::gtable_rbind(gt, gt2)
plot(gt3)