
The genArise Package

Ana Patricia Gómez Mayén
Gustavo Corral Guillé

Lina Riego Ruiz
Gerardo Coello Coutiño

October 29, 2024

1 Introduction
genArise is a package that contains specific functions to perform an analysis
of microarray obtained data to select genes that are significantly differen-
tially expressed between classes of samples. Before this analysis, genArise
carry out a number of transformations on the data to eliminate low-quality
measurements and to adjust the measured intensities to facilitate compar-
isons.

First, you must install the R system. The current released version is
2.2.0 and the binary can be obtained via CRAN, a collection of sites which
carry identical material, consisting of the R distribution(s), the contributed
extensions, documentation for R, and binaries. The CRAN master site can
be found at the URL http://cran.R-project.org/.

Then, you need install the packages tkrplot, locfit and xtable in order to
be able to use this package. This can be done as follows:

> install.packages(c("locfit","tkrplot", "xtable"))

This R function automatically download and install the three packages
from CRAN, but you must be connected to the network. In other case, you
must download the three packages from CRAN for the correct O.S. (Win-
dows, Linux) and install from the terminal these add-on packages with the

1

http://cran.R-project.org/

genArise

script R CMD INSTALL package_name for Linux or Rcmd INSTALL pack-
age_name for Windows. With the same script you can install genArise too.
You can read the instalation manual in the URL: http://www.ifc.unam.
mx/genarise.

genArise GUI uses widgets from the BWidget package and from the
Img package, neither of which come bundled with the default installation
of R. If you are using Windows (and not using the installation wizard), you
need to install ActiveTcl 8.4.x from http://aspn.activestate.com/ASPN/
Downloads/ActiveTcl/. After install ActiveTcl, you must set the environ-
ment variable MY_TCLTK to a non-empty value, for example: MY_TCLTK=Yes
and it is assumed that you want to use a different Tcl/Tk 8.4.x installation,
and that this is set up correctly. You must too set the environment variable
TCL_LIBRARY with the path where are the DLLs of Tcl in your machine,
for example: TCL_LIBRARY=C:/Tcl/lib/tcl8.4.

If using Linux, install the Tcl and Tk 8.3 rpms from CD, e.g. into /usr/lib,
then download BWidget from http://sourceforge.net/projects/tcllib/.
You must gunzip and untar this file into /usr/lib. Download too tkimg1.3
(this is the version for Tcl and Tk 8.3) which you can search in http:
//sourceforge.net and gunzip it and untar it into /usr/lib. Then you prob-
ably must copy the directory /usr/lib/tkimg1.3/Img/exec_prefix/lib/Img/
to /usr/lib.

Finally, genArise can be loaded with the next instruction:

> library(genArise)

Once loaded, you can use any function of genArise and proceed with the
analysis of the microarray data. genArise is provided with functions that
can be applied from R prompt in every step of analysis; however, there is
also a graphical user interface to facilitate the use of all the functions in the
package.

2

http://www.ifc.unam.mx/genarise
http://www.ifc.unam.mx/genarise
http://aspn.activestate.com/ASPN/Downloads/ActiveTcl/
http://aspn.activestate.com/ASPN/Downloads/ActiveTcl/
http://sourceforge.net/projects/tcllib/
http://sourceforge.net
http://sourceforge.net

genArise

2 The genArise Package’s Functions
To start the analysis you must read first the data contained in the input file.
To read this file, genArise provide the function read.spot. This function
returns an object of type Spot (a table structure with the name of the file
without extension and the data for the analysis: Cy3 intensity, Cy5 intensity,
Cy3 Background, Cy5 Background, Ids and maybe an optional column for
an extra identifier or gene symbol) because many other functions of genArise
that carry out transformations on the data need a spot object as argument.
The syntax for this function is:

> my.spot <- read.spot(file.name, cy3 = 1, cy5 = 2,
bg.cy3 = 3, bg.cy5 = 4, ids = 5, header = FALSE,
sep = "\t", is.ifc = FALSE)

Output: an object of class Spot called my.spot

You can see the details and the meaning of each one of the arguments of
this and all the other functions described bellow in the manual genArise.pdf
and you can download it from this address http://www.ifc.unam.mx/genarise
in the Package GenArise API link

We are not to give an example from this function, but you just have to
follow the sintax of the read.spot function described in the manual to create
a spot object. In this manual we use a subset of a data set called Simon for
the next examples. Simon, as we have said, is a spot object that was created
with the read.spot function and you can load this object as follow:

> data(Simon)
> ls()

[1] "Simon"

You have created an object of the class Spot in the current
environment so you will be able to apply to that object any
function of genArise that receives a spot as argument.

3

http://www.ifc.unam.mx/genarise

2.1 Diagnostic plots genArise

2.1 Diagnostic plots

Previous to any kind of transformation on the data once loaded the input,
you are able to visualize it using the function imageLimma. This function
constructs an image plot in a green to red scale representing the log2 inten-
sity ratio for each spot on the array. See Figure 1.

The imageLimma function receives several arguments depending on the
data that is going to be analyzed. imageLimma is completly based in the
imageplot function from the limma package.1

Figure 1: Image plot in a green to red scale.

> data(Simon)
> datos <- attr(Simon, "spotData")# Extract spot data
> M <- log(datos$Cy3, 2) - log(datos$Cy5, 2)
> imageLimma(z = M, row = 23, column = 24, meta.row = 2,

meta.column = 2, low = NULL, high = NULL)
1Gordon K. Smyth (2004) “Linear Models and Empirical Bayes Methods for Assessing

Differential Expression in Microarray Experiments ”, Statistical Applications in Genetics
and Molecular Biology: Vol. 3: No. 1, Article 3. http: // www. bepress. com/ sagmb/
vol3/ iss1/ art3

4

http://www.bepress.com/sagmb/vol3/iss1/art3
http://www.bepress.com/sagmb/vol3/iss1/art3

2.1 Diagnostic plots genArise

Output: Plot the intensity values See Figure 1

In the same way that you can plot the log2 intensity ratio for each spot,
you can also plot the background value that correspond to each one of the
intensities. See Figure 2 and 3.

For example, the next code generates the plot for Cy3 Bg intensities
shown in Figure 2.

Figure 2: Cy3 intensity background preview.

> data(Simon)
> datos <- attr(Simon, "spotData")# Extract spot data
> R <- log(datos$BgCy3, 2)
> imageLimma(z = R, row = 23, column = 24, meta.row = 2,

meta.column = 2, low = "white", high = "red")

Output: Cy3 intensity background plot. See Figure 2

And this is the code to generate the plot for Cy5 Bg intensities shown in
Figure 3..

5

2.1 Diagnostic plots genArise

Figure 3: Cy5 intensity background preview.

> data(Simon)
> datos <- attr(Simon, "spotData")# Extract spot data
> G <- log(datos$BgCy5, 2)
> imageLimma(z = G, row = 23, column = 24, meta.row = 2,

meta.column = 2, low = "white", high = "green")

Output: Cy5 intensity Background plot. See Figure 3

With the previous plots, you can see a preview of the raw data (without
background correction and normalization). It is important to clarify that
these image plot does not replace the original TIFF image from the microar-
ray experiment.

In order to be able to plot a spot after apply any operation, genArise
provides some functions for this purpose. For example, you can plot the
values R vs I, M vs A and Cy5 vs Cy3. This functions receive an object of
the class Spot.

> data(Simon)
> ri.plot(Simon)

Output: R vs I plot. See Figure 4.

6

2.2 Transformation functions genArise

6.0 6.5 7.0 7.5 8.0 8.5 9.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

I

R

Figure 4: R vs I plot.

> data(Simon)
> ma.plot(Simon)

Output: M vs A plot. See Figure 5.

> data(Simon)
> cys.plot(Simon)

Output: plot the log2(Cy3) and log2(Cy5) values. See Figure 6.

2.2 Transformation functions

At this moment, you can proceed with the data analysis. There are different
functions for this purpose and all this functions will be described in this
section.

2.2.1 Background Correction

The first of this functions makes the background correction; that is a sub-
traction Cy3 - BckgCy3 and Cy5 - BckgCy5 for each spot in the microarray.

7

2.2 Transformation functions genArise

10 11 12 13 14 15

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

A

M

Figure 5: M vs A plot.

The purpose of this function is to obtain the value of the real signal of Cy3
and Cy5 from the reported values in the data file. See Figure 7. The name
of this function is bg.correct.

> data(Simon)
> c.spot <- bg.correct(Simon)
> ri.plot(c.spot)

Input: The argument of this function is a spot object
before background correction.
Output: A spot object after background correction. See Figure 7

2.2.2 Data Normalization

Data normalization can be done by each subgrids (By grid) or in a global way
over all the microarray data, and each method may returns different results
for the same spot object. We must remark that the grid normalization can
just be applied to the complete data set, so you should not eliminate spots in
order to avoid errors executing this function. In the normalization procedure
any observation in which the R value is zero will be eliminated.

8

2.2 Transformation functions genArise

10 11 12 13 14 15

11
12

13
14

15

log2(Cy3)

lo
g2

(C
y5

)

Figure 6: log2(Cy3) vs log2(Cy5) plot.

Grid normalization is executed with the function grid.norm and is manda-
tory to indicate the dimensions of the subgrid, so, you must indicate the
number of rows and columns within each subgrid. See Figure 8.

> data(Simon)
> n.spot <- grid.norm(mySpot = Simon, nr = 23, nc = 24)
> ri.plot(n.spot)

Input: The argument of this function is a spot object
and the number of rows (nr) and columns (nc)
of each subgrid.

Output: A normalized spot object. See Figure 8

On the other hand, the global normalization is executed with the function
global.norm and it only requires as argument an object of the class Spot.
See Figure 9.

> data(Simon)
> n.spot <- global.norm(mySpot = Simon)
> ri.plot(n.spot)

9

2.2 Transformation functions genArise

3 4 5 6 7 8 9

−
2

−
1

0
1

2
3

I

R

Figure 7: R vs I plot of background corrected data.

Input: The argument of this function is the spot object.
Output: A normalized (global normalization) spot object. See Figure 9

As we said previously both functions returns different results and for this
reason you must choose the suitable function of normalization to the analysis
that you want to do. It for any reason spots are eliminated before normal-
ization procedure (applying operations as filtering or duplicates elimination)
the global normalization is the only normalization way.

In this example, the number of data in the spot is small and for this
reason the obtained values with both normalization functions could seems
very similar in the plots, however this is not the same in all the cases.

2.2.3 Data Filtering

Data filtering is an important step in the data analysis. genArise provide the
intensity-based filtering algorithm described by John Quackenbush2. The
name of the function is filter.spot. After this filtering you keep only ar-
ray elements with intensities that are statistically significantly different from

2John Quackenbush “Microarray data normalization and transformation”. Nature Ge-
netics. Vol.32 supplement pp 496-501 (2002)

10

2.2 Transformation functions genArise

6.0 6.5 7.0 7.5 8.0 8.5 9.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

I

R

Figure 8: R vs I plot of grid normalized data.

background. See Figure 10.

> data(Simon)
> f.spot <- filter.spot(mySpot = Simon)
> ri.plot(f.spot)

Input: The argument of this function is a spot object.
Output: A filtered spot object. See Figure 10

2.2.4 Replicates Filtering

Another step is the replicates filtering, and in this step, a lot of observations
are eliminated. One of the function for this purpose is called spotUnique
and this function compute the geometric mean for the replicates to average
our measurements, and the adjusted average measures for each gene can then
be used to carry out further analyses. See Figure 11.

> data(Simon)
> u.spot <- spotUnique(mySpot = Simon)
> ri.plot(u.spot)

11

2.2 Transformation functions genArise

6.0 6.5 7.0 7.5 8.0 8.5 9.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

I

R

Figure 9: R vs I plot of data after global normalization.

Input: The argument of this function is a spot object.
Output: A spot object without duplicates observations. See Figure 11

However, genArise offers other functions for the same purpose, but with
a different approach. We mean the function alter.unique. This function
takes the R value of each one of the duplicated observations but just keep
that observation with the extremest R value. So, if both of them are positives
this function keeps the greater one, if both of them are negatives it keep the
lower one and if there is one positive and one negative, both observations
are eliminated. It is clear that with this function a greater number of obser-
vations is conserved compared to those that are obtained with spotUnique
function. By this way you will probably have at the final of the analysis a
greater number of observations in the upper-expressed and lower-expressed
because you keep the extreme values. See Figure 12.

> data(Simon)
> u.spot <- alter.unique(mySpot = Simon)
> ri.plot(u.spot)

Input: The argument of this function is a spot object.
Output: A spot object without duplicates observations. See Figure 12

12

2.3 Identifying differentially expressed genes genArise

6.0 6.5 7.0 7.5 8.0 8.5 9.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

I

R

Figure 10: Filtered data, R vs I plot.

A third function compute the mean for the duplicates. This function
keeps not just one element for each id, but also this function eliminates those
points where the diference between the R value of the duplicated observations
is bigger than 20% of one of them. The name of this function is meanUnique.
See Figure 13.

> data(Simon)
> u.spot <- meanUnique(mySpot = Simon)
> ri.plot(u.spot)

Input: The argument of this function is a spot object
Output: A spot object without duplicates observations. See Figure 13

2.3 Identifying differentially expressed genes

The approach we use involves calculating the mean and standard deviation
of the distribution of log2(ratio) values and defining a global fold-change dif-
ference and confidence; for this purpose you must compute a Z-score for the
data set. In an R-I plot, that would be represented as lines following the
structure of the data; genes outside of those lines would be the differentially

13

2.3 Identifying differentially expressed genes genArise

6.0 6.5 7.0 7.5 8.0 8.5 9.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

I

R

Figure 11: R vs I plot of data after apply spotUnique function.

expressed2. See Figure 14.

As a matter of fact genArise offers two options for this analysis. You just
need to specify in the type argument on the Zscore function if you want a
R-I or a M-A analysis. This function receive as argument an object of the
class Spot and returns an object of other class called DataSet that includes
as one of their values the Z-score for the data set.

This is the example for Zscore using R-I values.

> data(Simon)
> s.spot <- Zscore(Simon, type="ri")

Input: The argument of this function is a spot object
Output: An object of the class DataSet

And this is the example for Zscore using M-A values

> data(Simon)
> s.spot <- Zscore(Simon, type="ma")

Input: The argument of this function is a spot object
Output: An object of the class DataSet

14

2.4 Plotting DataSets genArise

6.0 6.5 7.0 7.5 8.0 8.5 9.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

I

R

Figure 12: R vs I plot of data after apply alter.unique function.

2.4 Plotting DataSets

Since the objects of the DataSet class are different from the objects of the
class Spot you need a function to plot them. For this purpose exists a
function called Zscore.plot. So, in a R-I plot, array elements are color-
coded depending on wether they are less than 1 standard deviation from the
mean (green), between 1 and 1.5 standard deviations (blue), between 1.5 and
2 standard deviations (cyan), more than 1.5 standard deviations (yellow), or
more than 2 standard deviations from the mean (white). We use a subset of
a data set called WT for the next examples. WT is a DataSet object that
we have previously created.

> data(WT.dataset)
> Zscore.plot(WT.dataset)

Input: An object of the class DataSet
Output: Plot for identify differential expression. See Figure 14

2.5 genMerge

After you finish your slice analysis with function Zscore you get an up-
regulated and down-regulated set. This will be the set of study genes for

15

2.5 genMerge genArise

6.0 6.5 7.0 7.5 8.0 8.5 9.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

I

R

Figure 13: R vs I plot of data after apply meanUnique function.

genMerge. Given this set, the function genMerge retrieves functional genomic
data for each gene and provides statistical rank scores for over-representation
of particular functions in the dataset. The genMerge function is completly
based on GeneMerge from Cristian I. Castillo-Davis and Daniel L. Hartl 3.

Given a set of genes (for example the upper-expressed), genMerge write in
files the data of an statistic analysis of the upper-representation of functions
or particular categories on the set of data upper-expressed.

You must take care in the format of the input file, the file must not have
a header row. This function requires four data files and the file name where
will be save the obtained information. The main file that the function needs
are:

Association file. This file contains two columns splited by tab charac-
ters. The first column corresponds to the gene identifier in the microarray
and the second one corresponds to a list of associated ids for the geneontol-

3Cristian I. Castillo-Davis, Department of Statistics, Harvard University http://www.
oeb.harvard.edu/hartl/lab/publications/GeneMerge

16

http://www.oeb.harvard.edu/hartl/lab/publications/GeneMerge
http://www.oeb.harvard.edu/hartl/lab/publications/GeneMerge

2.5 genMerge genArise

4 5 6 7 8 9

−
1

0
1

2

I

R

Figure 14: Data after Z-score Analysis.

ogy database to this gen (GO). Each GO in this list is separted by ";" and
is necessary to consult a database to locate the associated GOs to each gen
(see http://www.geneontology.org)

Example:

YAL001C GO:0003709;
YAL002W GO:0005554;
YAL003W GO:0003746;
YAL005C GO:0003754;GO:0003773;GO:0004002;
YAL007C GO:0005554;

Description file. This file also contains two columns splited by tab
characters, the first one corresponds to the name of some GOs and the second
one corresponds to the description associated to each GO in the database.

Example:

GO:0000005 ribosomal chaperone activity
GO:0000006 high affinity zinc uptake transporter activity
GO:0000007 low-affinity zinc ion transporter activity
GO:0000008 thioredoxin
GO:0000009 alpha-1,6-mannosyltransferase activity

17

2.6 Using genMerge genArise

GO:0000010 trans-hexaprenyltranstransferase activity
GO:0000014 single-stranded DNA specific endodeoxyribonuclease activity
GO:0000016 lactase activity

All genes (population.genes). This file should only contain one col-
umn, the spot identifiers or those of the input file not analyzed yet are the
column information, each identifier is a row file.

YAL001C
YAL002W
YAL003W
YAL004W
YAL005C
YAL007C
YAL008W
YAL009W
YAL010C
YAL011W

The genes to study. Like the preceding described file, this file only
contains one column and each row corresponds to the name of one of the
genes in the set that will be studied (upper-expressed or lower-expressed).

2.6 Using genMerge

As the first step is create a spot object in the way described in the previous
sections, the you must write the ids in a file, so you can do something like this:

> # Let's suppose that original spot is o.spot
> # To write the population file you can use write.table
> ids <- attr(o.spot, "spotData")$Ids
> ids <- unique(ids)
> write.table(ids, "population.genes")

Output: File named population.genes that contains just the ids

In the same way, with the write.table function you can write the iden-
tifiers of the genes set that will be studied. Suppose there exist a slice Spot

18

2.7 Post-analysis genArise

called s.spot wich have the results after slice analysis, if you wish that your
set of study have the upper-expressed identifiers and the lower-expressed
identifiers to write the corresponding file, you must follow the next code.

> # To write the study genes file
> study.ids <- c(s.spot$Id.up, s.spot$Id.down)
> study.ids <- unique(study.ids)
> write.table(study.ids, "study.genes")

If you only want to preserve the identifier of some set, say upper-expressed
or lower-expressed type the next lines:

> # Only write upper-expressed
> study.ids <- s.spot$Id.up # to write lower-expressed use s.spot$Id.down
> study.ids <- unique(study.ids)
> write.table(study.ids, "study.genes")

The other files should be constructed consulting a database or could
be downloaded from the internet, this files should contain the format de-
scribed above, so that the genMerge function operates correctly. The sintax
of genMerge function is the next:

> genMerge(gene.association, description, population.genes,
study.genes, output.file = "GeneMerge.txt"){

The results will be in the corresponding file, in the above example GeneMerge.txt.

2.7 Post-analysis

This function allows you to perform a set combinatorial analysis between
the results previously obtained in different projects. This function is called
post.analysis and it is mandatory that you have done the Zscore opera-
tion in all the selected projects. It is important to clarify that this function
receives a list of files with extension prj as argument and for this reason you
can’t use it if the results to compare was not obtained by the genArise GUI.

The function post.analysis receives as argument a list of projects and
look for the zscore.txt files for each project in the list. Once located each
zscore.txt file the function get a list of ids for each project under the next

19

genArise

criterion: all the ids must have a zscore value inside a range defined by the
user.

Once obtained the ids list for each project a number of files with extension
set are created in a directory. The name of this files consists in a sequence
of 0 and 1. The number of digits in the file names is the same to the number
of projects in the list passed as argument to the function. There is then,
a relation between the number of digits in the file names and the projects.
This relation is defined by the position specified in the file order.txt in the
same directory you have passed as another argument in the function.

Each file will contain the ids that are present in all the sets (projects) in
agreement to the file order.txt have 1 in the digit corresponding in the file
name and in addition, this ids are not present in all the other sets (identified
with a 0 in the filename).

3 The genArise GUI
To reduce the size of the genArise package, in the text bellow the screenshots
were not included. You can find the complete manual in the site of genArise
http://www.ifc.unam.mx/genarise. The title is genAriseimages.pdf .

For making the analysis easier, genArise joins all functions in a graphic
interface, to call this GUI, you must type the next line from the R prompt:

> genArise()

Now a menu-bar with two options and some icons for specific functions
is displayed. When the mouse is passed over any icon in the main menu bar,
a label with a description of the corresponding function will be displayed in
the right side. From now on every icon in this menu bar will be identified by
this description.

The GUI use R TclTk and if you are using the RGui in Windows, you
can quickly notices that the RGui main window frequently "gets in the way",
as genArise windows like to hide behind it. To avoid this, you can minimize

20

http://www.ifc.unam.mx/genarise

3.1 Create a new project genArise

the RGui after you call genArise().

3.1 Create a new project

You should create a New Project following the sequence File → Project →
New Project in the menu, or click the icon Create a new Project.

A new window containing two panels (Input and Output) will be dis-
played. In the first of them you must specify the properties of the file con-
taining the data, for example: location, was the experiment performed in
the IFC?, microarray dimensions in other case. In this way, when the exper-
iment was performed in the IFC you must choose the option IFC and the
microarray dimensions will be automatically obtained.

In the input field labeled Cy3, Cy5, BgCy3, BgCy5 and Id you must
type the number of the column in the file corresponding Cy3 intensity, Cy5
intensity, Cy3 background, Cy5 background and the gene identifiers, respec-
tively. The input field labeled Symbol is optional and and here you can type
the number of the column in the file with an extra identifier (for example:
GeneSymbol).

In the inferior panel, there is an input field labeled with Project Name
where you must type the name of the project to create and a new file with prj
extension, as well as a directory with the specified name will be created. The
next two input fields you must specify the name of the subdirectories from
this project where the results files will be placed (Location for Results)
and the plots (Location for Plots). You can change this names writing on
the input field a new file name (without the path) or click the browse button.

Then, the window containing a preliminary view of the main grid is dis-
played as an image plot in a green to red scale representing the log2 intensity
ratio for each spot on the array. It is important to clarify that these image
plot does not replace the original TIFF image from the microarray experi-
ment.

You can also see the green and red levels by separated just selecting the
corresponding option in the lower right part of the window.

In the upper right side panel of the window you can see the experiment

21

3.1 Create a new project genArise

geometry.

You can save the plot in a pdf file by selecting the option Save as PDF
in the menu Options or clicking in the Save graphic as PDF icon. With
the option Note of the same menu or clicking in the Notes about the
experiment icon, a text editor will be launched where you can make some
important notes through the analysis and save these in a file called notes.txt.

3.1.1 Data Analisis

At this moment you can start the analysis by clicking on the menu Analyze
or clicking in the Make analysis data icon, that will display a dialog box.
Choosing Yes the program makes the operations in the following sequential
order: background correction, loess normalization, intensity-filter, replicates
filtering. Once this analysis is over you see the next window.

This window shows the graphic R -vs- I of the data obtained after the
complete analysis. In the right side of the same window there are five op-
tions corresponding to the results of the operations performed through the
analysis, choosing some of them the plot of the results for this step of the
analysis will be displayed in the window.

genArise allows you to choose between three different graphic types (R
-vs- I, M -vs- A o Cy3 -vs- Cy5) and you can display each one of this graphics
just choosing the right option from the Graphics menu in the menu bar.

There is a white component in the lower side of the window where you
can find the information for each one of the operations done.

At the end, you find one file for each operation done in the Location
for Results subdirectory. All this files have a default name and you can’t
modify in no way this file name because they are essencial to be able to open
this project with the genArise GUI in the future.

If you decide not to follow the wizard only the original data (no one
operation performed) is displayed in a different window. In this case, you
can perform any operation selecting the wished option in the menu bar. Once

22

3.2 Open Project genArise

an operation is made, a new reference with the label corresponding to the
operation performed will be showed up in the right side of the window and
the graphic of the results obtained with that operation will be displayed. Is
important to note that the operations are performed on the selected spot.
If you wish to make a sequential analysis you must take care of the selected
option.

3.1.2 Zscore Window

Clicking the Zscore option menu you can perform the operation Zscore de-
scribed in section 2 and after select this option a new window will be dis-
played. You can display six plots for different z-score values in a range
defined by the label of the corresponding option. You must select the option
Write as output file to get a file for the up-regulated genes an a file for
the down-regulated genes in the selected z-score range. Each file include a
header indicating the corresponding values.

3.2 Open Project

You can open and consult the data of a previously done analysis with the
option Open Project from the genArise main menu. After click this option
you must select the prj file with the same name of the wished project from
the file selector window. After this, a new window is displayed where you
can check all plots from the results of the analyasis in that project. This
plots are obtained from the data in the result files.

3.3 Post-analysis Window

This window allows you to obtain all the essencial information for the func-
tion post.analysis previously described. The list of the projects are choosed
in the left side panel of the window. You can select several files with exten-
sion prj one by one just clicking the Add button.

You must type and select the other arguments for the function: the di-
rectory that will contain all the output files, the range for the zscore and if
the analysis will be done with "up" or "down" regulated.

23

3.4 Swap Analysis genArise

3.4 Swap Analysis

If you have a dye-swapped experiment, you can apply the Swap Analysis to
get better results than apply the single experiments separately.

You should create a New Swap Project following the sequence File →
Swap Analysis in the menu, or click the icon Dye-Swap Analysis. A new
window will be displayed.

3.4.1 Read swap dye data file pair

The new window allows you to select input data file pair from the File se-
lector browser opened when the Add file button is clicked. When this File
selector browser is displayed.

Find the directory where data files are stored, all data files with the spec-
ified format type (csv, txt or *) in this directory will be displayed. From
the file list, select the first file of a swap dye pair (the original) and click
OK. Click again the Add file button and repeat the operation to select the
second file of the swap dye pair (the swap). The file pair will be displayed
in the left panel. Multiple pairs selection is not implemented for now. If two
files are paired up by mistake, you can delete the incorrect file just clicking
the Delete file button.

The right side of the window contain two panels (Input and Output) will
be displayed. In the first of them you must specify the properties of the file
pair containing the data, for example: was the experiment performed in the
IFC?, microarray dimensions in other case. In this way, when the experi-
ment was performed in the IFC you must choose the option IFC and the
microarray dimensions will be automatically obtained.

In the input field labeled Cy3, Cy5, BgCy3, BgCy5 and Id, you must
type the number of the column in the files corresponding Cy3 intensity, Cy5
intensity, Cy3 background, Cy5 background and the gene identifiers, respec-
tively.

In the Output panel, there is an input field labeled with Project Name
where you must type the name of the swap project to create, and a new file

24

3.4 Swap Analysis genArise

with prj extension, as well as a directory with the specified name will be
created. The next two input fields you must specify the name of the subdi-
rectories from this project where the results files will be placed (Location
for Results) and the plots (Location for Plots). You can change this
names writing on the input field a new file name (without the path) or click
the browse button.

3.4.2 Swap Dye Diagnostic graph and swap dye consistency check-
ing

After create a new swap project, a new window is displayed where a Swap Dye
Diagnostic graph is plotted based on log2

Cy5
Cy3

of file 1 (original) -vs- log2Cy3
Cy5

of file 2 (swap). This kind of graph provides an good visual summary of how
consistent the gene expressions are between a pair of Swap-dye experiment.

Swap dye consistency checking allows filtering out spots that show ex-
pression level inconsistency between a pair of flip-dye replicates. For this
function the next steps are performed.

Calculate the cross-log-ratios of the data file pair for each spot.

R = log2
Cy51∗Cy32
Cy31∗Cy52

If any Cy51, Cy32, Cy31, Cy52 is 0, set R = 0.

Calculate the mean and standard deviation of all none-zero R.

For each spot:

A 2 SD cut is used, and the spots with theirs R values having R ≤
mean(R) − σ(R) ∗ 2 or R ≥ mean(R) + σ(R) ∗ 2 are marked as swap-dye
inconsistent and will be excluded from following analysis.

For those spots passed the swap-dye consistency checking, the Cy3 and
Cy5 intensities from both files will be merged. The merged intensities will
be the geometric means of the swap-dye replicates. In the merged file, spot
information other than Cy3 and Cy5 intensities will be the geometric mean

25

3.4 Swap Analysis genArise

of the data in the pair.

Two factors are computed to describe the overall consistency level between
the swap-dye pair and both values are shown in the lower-right panel of the
window. The two factors are Confidence Factor and Dispersion Factor.

ConfidenceFactor = NumberOfSpotsSatisfyTheConsistencyCriteria
TotalNonZeroIntensities

DispersionFactor = NumberOfSpotsWithInconsistentRatioBeyond2SD
TotalNonZeroIntensities

If the R values follow normal distribution (closely), the Confidence Factor
for SD cut range of |2SD| should be very close to 95%.

3.4.3 Data Analisis

After this you can perform the analysis as described in the section 3.1.1. The
background correction is performed by default and for the other operations
you can follow the wizard or customize the order of the operations selecting
the wished option in the menu bar.

3.4.4 Zscore Window

Clicking the Zscore option menu you can perform the operation Zscore de-
scribed in section 2 and after select this option a new window will be dis-
played. You can display six plots for different z-score values in a range
defined by the label of the corresponding option. You must select the option
Write as output file to get a file for the up-regulated genes an a file for
the down-regulated genes in the selected z-score range. For this dye-swapped
experiment, the first column of the z-score files is the Id for aech spot, the
second column is the Z-score for each cross-ratio (both files), the third col-
umn is the Zscore for the file 1 and the fourth column is the Zscore for the file
2. Where a zero appear in one of the last two columns, that means that this
spot was eliminated in one of the preprocessing transformations before the
Z-score analysis of the corresponding experiment. Each file include a header
indicating the corresponding values.

26

	Introduction
	The genArise Package's Functions
	Diagnostic plots
	Transformation functions
	Background Correction
	Data Normalization
	Data Filtering
	Replicates Filtering

	Identifying differentially expressed genes
	Plotting DataSets
	genMerge
	Using genMerge
	Post-analysis

	The genArise GUI
	Create a new project
	Data Analisis
	Zscore Window

	Open Project
	Post-analysis Window
	Swap Analysis
	Read swap dye data file pair
	Swap Dye Diagnostic graph and swap dye consistency checking
	Data Analisis
	Zscore Window

