## ----results='hide', message=FALSE, eval=FALSE-------------------------------- # if (!require("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # # BiocManager::install("epiregulon.extra") # ## ----------------------------------------------------------------------------- # load the MAE object library(scMultiome) mae <- scMultiome::reprogramSeq() # expression matrix GeneExpressionMatrix <- mae[["GeneExpressionMatrix"]] rownames(GeneExpressionMatrix) <- rowData(GeneExpressionMatrix)$name reducedDim(GeneExpressionMatrix, "UMAP_Combined") <- reducedDim(mae[["TileMatrix500"]], "UMAP_Combined") # arrange hash_assignment GeneExpressionMatrix$hash_assignment <- factor(as.character( GeneExpressionMatrix$hash_assignment), levels = c("HTO10_GATA6_UTR", "HTO2_GATA6_v2", "HTO8_NKX2.1_UTR", "HTO3_NKX2.1_v2", "HTO1_FOXA2_v2", "HTO4_mFOXA1_v2", "HTO6_hFOXA1_UTR", "HTO5_NeonG_v2" ) ) ## ----calculateActivity, results = "hide"-------------------------------------- library(epiregulon) library(epiregulon.extra) data(regulon) score.combine <- calculateActivity( expMatrix = GeneExpressionMatrix, regulon = regulon, mode = "weight", method = "weightedMean", exp_assay = "normalizedCounts", normalize = FALSE ) ## ----differential------------------------------------------------------------- library(epiregulon.extra) markers <- findDifferentialActivity( activity_matrix = score.combine, clusters = GeneExpressionMatrix$hash_assignment, pval.type = "some", direction = "up", test.type = "t", logvalue = FALSE ) ## ----------------------------------------------------------------------------- markers.sig <- getSigGenes(markers, topgenes = 5) ## ----visualization------------------------------------------------------------ plotBubble( activity_matrix = score.combine, tf = c("NKX2-1", "GATA6", "FOXA1", "FOXA2"), clusters = GeneExpressionMatrix$hash_assignment ) ## ----------------------------------------------------------------------------- plotBubble( activity_matrix = score.combine, tf = markers.sig$tf, clusters = GeneExpressionMatrix$hash_assignment ) ## ----------------------------------------------------------------------------- plotActivityViolin( activity_matrix = score.combine, tf = c("NKX2-1", "GATA6", "FOXA1", "FOXA2", "AR"), clusters = GeneExpressionMatrix$hash_assignment ) ## ----fig.height = 6, fig.width = 9-------------------------------------------- options(ggrastr.default.dpi=100) ActivityPlot <- plotActivityDim( sce = GeneExpressionMatrix, activity_matrix = score.combine, tf = c("NKX2-1", "GATA6", "FOXA1", "FOXA2", "AR"), dimtype = "UMAP_Combined", label = "Clusters", point_size = 0.3, ncol = 3, rasterise = TRUE ) ActivityPlot ## ----fig.height = 6, fig.width = 9-------------------------------------------- options(ggrastr.default.dpi=100) ActivityPlot <- plotActivityDim( sce = GeneExpressionMatrix, activity_matrix = counts(GeneExpressionMatrix), tf = c("NKX2-1", "GATA6", "FOXA1", "FOXA2", "AR"), dimtype = "UMAP_Combined", label = "Clusters", point_size = 0.3, ncol = 3, limit = c(0, 2), colors = c("grey", "blue"), legend.label = "GEX", rasterise = TRUE ) ActivityPlot ## ----eval=FALSE--------------------------------------------------------------- # plotHeatmapRegulon( # sce = GeneExpressionMatrix, # tfs = c("GATA6", "NKX2-1"), # regulon = regulon, # regulon_cutoff = 0, # downsample = 1000, # cell_attributes = "hash_assignment", # col_gap = "hash_assignment", # exprs_values = "normalizedCounts", # name = "regulon heatmap", # column_title_rot = 45, # raster_quality=4 # ) # # # plotHeatmapActivity( # activity = score.combine, # sce = GeneExpressionMatrix, # tfs = c("GATA6", "NKX2-1", "FOXA1", "FOXA2"), # downsample = 5000, # cell_attributes = "hash_assignment", # col_gap = "hash_assignment", # name = "Activity", # column_title_rot = 45, # raster_quality=3 # ) ## ----enrichment, fig.height = 8, fig.width = 14------------------------------- # retrieve genesets H <- EnrichmentBrowser::getGenesets( org = "hsa", db = "msigdb", cat = "H", gene.id.type = "SYMBOL" ) C2 <- EnrichmentBrowser::getGenesets( org = "hsa", db = "msigdb", cat = "C2", gene.id.type = "SYMBOL" ) C6 <- EnrichmentBrowser::getGenesets( org = "hsa", db = "msigdb", cat = "C6", gene.id.type = "SYMBOL" ) # combine genesets and convert genesets to be compatible with enricher gs <- c(H, C2, C6) gs.list <- do.call(rbind, lapply(names(gs), function(x) { data.frame(gs = x, genes = gs[[x]]) })) enrichresults <- regulonEnrich( TF = c("GATA6", "NKX2-1"), regulon = regulon, weight = "weight", weight_cutoff = 0.1, genesets = gs.list ) # plot results enrichPlot(results = enrichresults) ## ----plot gsea network-------------------------------------------------------- plotGseaNetwork( tf = names(enrichresults), enrichresults = enrichresults, p.adj_cutoff = 0.1, ntop_pathways = 10 ) ## ----differential networks---------------------------------------------------- plotDiffNetwork(regulon, cutoff = 0.1, tf = c("GATA6"), weight = "weight", clusters = c("C1", "C5"), layout = "stress" ) plotDiffNetwork(regulon, cutoff = 0.1, tf = c("NKX2-1"), weight = "weight", clusters = c("C3", "C5"), layout = "stress" ) ## ----------------------------------------------------------------------------- selected <- which(regulon$weight[, "C1"] > 0 & regulon$tf %in% c("GATA6", "FOXA1", "AR")) C1_network <- buildGraph(regulon[selected, ], weights = "weight", cluster = "C1" ) plotEpiregulonNetwork(C1_network, layout = "sugiyama", tfs_to_highlight = c("GATA6", "FOXA1", "AR")) + ggplot2::ggtitle("C1") ## ----------------------------------------------------------------------------- # rank by differential centrality C1_network <- buildGraph(regulon, weights = "weight", cluster = "C1") C5_network <- buildGraph(regulon, weights = "weight", cluster = "C5") diff_graph <- buildDiffGraph(C1_network, C5_network, abs_diff = FALSE) diff_graph <- addCentrality(diff_graph) diff_graph <- normalizeCentrality(diff_graph) rank_table <- rankTfs(diff_graph) library(ggplot2) ggplot(rank_table, aes(x = rank, y = centrality)) + geom_point() + ggrepel::geom_text_repel(data = rank_table, aes(label = tf)) + theme_classic() ## ----------------------------------------------------------------------------- sessionInfo()