## ----setup, message = FALSE, warning = FALSE, comment = NA-------------------- knitr::opts_chunk$set(message = FALSE, warning = FALSE, comment = NA, fig.width = 6.25, fig.height = 5) library(ANCOMBC) library(tidyverse) library(DT) options(DT.options = list( initComplete = JS("function(settings, json) {", "$(this.api().table().header()).css({'background-color': '#000', 'color': '#fff'});","}"))) ## ----getPackage, eval=FALSE--------------------------------------------------- # if (!requireNamespace("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # BiocManager::install("ANCOMBC") ## ----load, eval=FALSE--------------------------------------------------------- # library(ANCOMBC) ## ----------------------------------------------------------------------------- data(atlas1006, package = "microbiome") # Subset to baseline pseq = phyloseq::subset_samples(atlas1006, time == 0) # Re-code the bmi group meta_data = microbiome::meta(pseq) meta_data$bmi = recode(meta_data$bmi_group, obese = "obese", severeobese = "obese", morbidobese = "obese") # Note that by default, levels of a categorical variable in R are sorted # alphabetically. In this case, the reference level for `bmi` will be # `lean`. To manually change the reference level, for instance, setting `obese` # as the reference level, use: meta_data$bmi = factor(meta_data$bmi, levels = c("obese", "overweight", "lean")) # You can verify the change by checking: # levels(meta_data$bmi) # Create the region variable meta_data$region = recode(as.character(meta_data$nationality), Scandinavia = "NE", UKIE = "NE", SouthEurope = "SE", CentralEurope = "CE", EasternEurope = "EE", .missing = "unknown") phyloseq::sample_data(pseq) = meta_data # Subset to lean, overweight, and obese subjects pseq = phyloseq::subset_samples(pseq, bmi %in% c("lean", "overweight", "obese")) # Discard "EE" as it contains only 1 subject # Discard subjects with missing values of region pseq = phyloseq::subset_samples(pseq, ! region %in% c("EE", "unknown")) print(pseq) ## ----------------------------------------------------------------------------- out = ancombc(data = pseq, tax_level = "Family", formula = "age + region + bmi", p_adj_method = "holm", prv_cut = 0.10, lib_cut = 1000, group = "bmi", struc_zero = TRUE, neg_lb = TRUE, tol = 1e-5, max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE, n_cl = 1, verbose = TRUE) res = out$res res_global = out$res_global ## ----eval=FALSE--------------------------------------------------------------- # out = ancombc(data = pseq, tax_level = "Family", # formula = "age + region * bmi", # p_adj_method = "holm", prv_cut = 0.10, lib_cut = 1000, # group = "bmi", struc_zero = TRUE, neg_lb = TRUE, tol = 1e-5, # max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE, # n_cl = 1, verbose = TRUE) # # res = out$res # res_global = out$res_global ## ----------------------------------------------------------------------------- tab_lfc = res$lfc col_name = c("Taxon", "Intercept", "Age", "NE - CE", "SE - CE", "US - CE", "Overweight - Obese", "Lean - Obese") colnames(tab_lfc) = col_name tab_lfc %>% datatable(caption = "Log Fold Changes from the Primary Result") %>% formatRound(col_name[-1], digits = 2) ## ----------------------------------------------------------------------------- tab_se = res$se colnames(tab_se) = col_name tab_se %>% datatable(caption = "SEs from the Primary Result") %>% formatRound(col_name[-1], digits = 2) ## ----------------------------------------------------------------------------- tab_w = res$W colnames(tab_w) = col_name tab_w %>% datatable(caption = "Test Statistics from the Primary Result") %>% formatRound(col_name[-1], digits = 2) ## ----------------------------------------------------------------------------- tab_p = res$p_val colnames(tab_p) = col_name tab_p %>% datatable(caption = "P-values from the Primary Result") %>% formatRound(col_name[-1], digits = 2) ## ----------------------------------------------------------------------------- tab_q = res$q colnames(tab_q) = col_name tab_q %>% datatable(caption = "Adjusted p-values from the Primary Result") %>% formatRound(col_name[-1], digits = 2) ## ----------------------------------------------------------------------------- tab_diff = res$diff_abn colnames(tab_diff) = col_name tab_diff %>% datatable(caption = "Differentially Abundant Taxa from the Primary Result") ## ----------------------------------------------------------------------------- samp_frac = out$samp_frac # Replace NA with 0 samp_frac[is.na(samp_frac)] = 0 # Add pesudo-count (1) to avoid taking the log of 0 log_obs_abn = log(out$feature_table + 1) # Adjust the log observed abundances log_corr_abn = t(t(log_obs_abn) - samp_frac) # Show the first 6 samples round(log_corr_abn[, 1:6], 2) %>% datatable(caption = "Bias-corrected log observed abundances") ## ----------------------------------------------------------------------------- df_lfc = data.frame(res$lfc[, -1] * res$diff_abn[, -1], check.names = FALSE) %>% mutate(taxon_id = res$diff_abn$taxon) %>% dplyr::select(taxon_id, everything()) df_se = data.frame(res$se[, -1] * res$diff_abn[, -1], check.names = FALSE) %>% mutate(taxon_id = res$diff_abn$taxon) %>% dplyr::select(taxon_id, everything()) colnames(df_se)[-1] = paste0(colnames(df_se)[-1], "SE") df_fig_age = df_lfc %>% dplyr::left_join(df_se, by = "taxon_id") %>% dplyr::transmute(taxon_id, age, ageSE) %>% dplyr::filter(age != 0) %>% dplyr::arrange(desc(age)) %>% dplyr::mutate(direct = ifelse(age > 0, "Positive LFC", "Negative LFC")) df_fig_age$taxon_id = factor(df_fig_age$taxon_id, levels = df_fig_age$taxon_id) df_fig_age$direct = factor(df_fig_age$direct, levels = c("Positive LFC", "Negative LFC")) p_age = ggplot(data = df_fig_age, aes(x = taxon_id, y = age, fill = direct, color = direct)) + geom_bar(stat = "identity", width = 0.7, position = position_dodge(width = 0.4)) + geom_errorbar(aes(ymin = age - ageSE, ymax = age + ageSE), width = 0.2, position = position_dodge(0.05), color = "black") + labs(x = NULL, y = "Log fold change", title = "Log fold changes as one unit increase of age") + scale_fill_discrete(name = NULL) + scale_color_discrete(name = NULL) + theme_bw() + theme(plot.title = element_text(hjust = 0.5), panel.grid.minor.y = element_blank(), axis.text.x = element_text(angle = 60, hjust = 1)) p_age ## ----------------------------------------------------------------------------- df_fig_bmi = df_lfc %>% filter(bmioverweight != 0 | bmilean != 0) %>% transmute(taxon_id, `Overweight vs. Obese` = round(bmioverweight, 2), `Lean vs. Obese` = round(bmilean, 2)) %>% pivot_longer(cols = `Overweight vs. Obese`:`Lean vs. Obese`, names_to = "group", values_to = "value") %>% arrange(taxon_id) lo = floor(min(df_fig_bmi$value)) up = ceiling(max(df_fig_bmi$value)) mid = (lo + up)/2 p_bmi = df_fig_bmi %>% ggplot(aes(x = group, y = taxon_id, fill = value)) + geom_tile(color = "black") + scale_fill_gradient2(low = "blue", high = "red", mid = "white", na.value = "white", midpoint = mid, limit = c(lo, up), name = NULL) + geom_text(aes(group, taxon_id, label = value), color = "black", size = 4) + labs(x = NULL, y = NULL, title = "Log fold changes as compared to obese subjects") + theme_minimal() + theme(plot.title = element_text(hjust = 0.5)) p_bmi ## ----------------------------------------------------------------------------- tab_w = res_global[, c("taxon", "W")] tab_w %>% datatable(caption = "Test Statistics from the Global Test Result") %>% formatRound(c("W"), digits = 2) ## ----------------------------------------------------------------------------- tab_p = res_global[, c("taxon", "p_val")] tab_p %>% datatable(caption = "P-values from the Global Test Result") %>% formatRound(c("p_val"), digits = 2) ## ----------------------------------------------------------------------------- tab_q = res_global[, c("taxon", "q_val")] tab_q %>% datatable(caption = "Adjusted p-values from the Global Test Result") %>% formatRound(c("q_val"), digits = 2) ## ----------------------------------------------------------------------------- tab_diff = res_global[, c("taxon", "diff_abn")] tab_diff %>% datatable(caption = "Differentially Abundant Taxa from the Global Test Result") ## ----------------------------------------------------------------------------- sig_taxa = res_global %>% dplyr::filter(diff_abn == TRUE) %>% .$taxon df_bmi = tab_lfc %>% dplyr::select(Taxon, `Overweight - Obese`, `Lean - Obese`) %>% filter(Taxon %in% sig_taxa) df_heat = df_bmi %>% pivot_longer(cols = -one_of("Taxon"), names_to = "region", values_to = "value") %>% mutate(value = round(value, 2)) df_heat$Taxon = factor(df_heat$Taxon, levels = sort(sig_taxa)) lo = floor(min(df_heat$value)) up = ceiling(max(df_heat$value)) mid = (lo + up)/2 p_heat = df_heat %>% ggplot(aes(x = region, y = Taxon, fill = value)) + geom_tile(color = "black") + scale_fill_gradient2(low = "blue", high = "red", mid = "white", na.value = "white", midpoint = mid, limit = c(lo, up), name = NULL) + geom_text(aes(region, Taxon, label = value), color = "black", size = 4) + labs(x = NULL, y = NULL, title = "Log fold changes for globally significant taxa") + theme_minimal() + theme(plot.title = element_text(hjust = 0.5)) p_heat ## ----eval=FALSE--------------------------------------------------------------- # tse = mia::makeTreeSummarizedExperimentFromPhyloseq(pseq) # # out = ancombc(data = tse, assay_name = "counts", tax_level = "Family", # formula = "age + region + bmi", # p_adj_method = "holm", prv_cut = 0.10, lib_cut = 1000, # group = "bmi", struc_zero = TRUE, neg_lb = TRUE, tol = 1e-5, # max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE, # n_cl = 1, verbose = TRUE) # # res = out$res # res_global = out$res_global ## ----eval=FALSE--------------------------------------------------------------- # abundance_data = microbiome::abundances(pseq) # aggregate_data = microbiome::abundances(microbiome::aggregate_taxa(pseq, "Family")) # meta_data = microbiome::meta(pseq) # # out = ancombc(data = abundance_data, aggregate_data = aggregate_data, # meta_data = meta_data, formula = "age + region + bmi", # p_adj_method = "holm", prv_cut = 0.10, lib_cut = 1000, # group = "bmi", struc_zero = TRUE, neg_lb = TRUE, tol = 1e-5, # max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE, # n_cl = 1, verbose = TRUE) # # res = out$res # res_global = out$res_global ## ----sessionInfo, message = FALSE, warning = FALSE, comment = NA-------------- sessionInfo()