## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options( rmarkdown.html_vignette.check_title = FALSE ) ## ----setup, message = FALSE--------------------------------------------------- library(tidytof) library(dplyr) library(ggplot2) ## ----------------------------------------------------------------------------- data(phenograph_data) # perform the dimensionality reduction phenograph_tsne <- phenograph_data |> tof_preprocess() |> tof_reduce_dimensions(method = "tsne") # select only the tsne embedding columns phenograph_tsne |> select(contains("tsne")) |> head() ## ----------------------------------------------------------------------------- phenograph_data |> tof_preprocess() |> tof_reduce_dimensions(method = "tsne", augment = FALSE) ## ----------------------------------------------------------------------------- phenograph_data |> tof_reduce_dimensions(method = "umap", augment = FALSE) phenograph_data |> tof_reduce_dimensions(method = "pca", augment = FALSE) ## ----------------------------------------------------------------------------- # 2 principal components phenograph_data |> tof_reduce_pca(num_comp = 2) ## ----------------------------------------------------------------------------- # 3 principal components phenograph_data |> tof_reduce_pca(num_comp = 3) ## ----------------------------------------------------------------------------- # plot the tsne embeddings using color to distinguish between clusters phenograph_tsne |> tof_plot_cells_embedding( embedding_cols = contains(".tsne"), color_col = phenograph_cluster ) # plot the tsne embeddings using color to represent CD11b expression phenograph_tsne |> tof_plot_cells_embedding( embedding_cols = contains(".tsne"), color_col = cd11b ) + ggplot2::scale_fill_viridis_c() ## ----------------------------------------------------------------------------- sessionInfo()