--- title: "Signal drift and batch effect correction for mass spectrometry" author: - name: "Andris Jankevics" affiliation: Phenome Centre Birmingham, University of Birmingham, UK email: a.jankevics@bham.ac.uk - name: Ralf Johannes Maria Weber affiliation: Phenome Centre Birmingham, University of Birmingham, UK email: r.j.weber@bham.ac.uk package: pmp date: "`r Sys.Date()`" output: BiocStyle::html_document: toc: true toc_depth: 2 number_sections: true toc_float: true bibliography: pmp.bib csl: harvard-university-of-birmingham.csl vignette: > %\VignetteIndexEntry{Signal drift and batch effect correction for mass spectrometry} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` # Introduction This vignette demonstrates how to apply Quality Control-Robust Spline Correction (QC-RSC) [@kirwan2013] algorithm for signal drift and batch effect correction within/across a multi-batch direct infusion mass spectrometry (DIMS) and liquid chromatography mass spectrometry (LCMS) datasets. Please read "Signal drift and batch effect correction and mass spectral quality assessment" vignette to learn how to assess your dataset and details on algorithm itself. # Installation You should have R version 4.0.0 or above and Rstudio installed to be able to run this notebook. Execute following commands from the R terminal. ```{r echo=TRUE, message=FALSE, warning=FALSE, eval=FALSE} install.packages("gridExtra") if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("pmp") ``` Load the required libraries into the R environment ```{r, message=FALSE, warning=FALSE} library(S4Vectors) library(SummarizedExperiment) library(pmp) library(ggplot2) library(reshape2) library(gridExtra) ``` # Dataset In this tutorial we will be using a direct infusion mass spectrometry (DIMS) dataset consisting of 172 samples measured across 8 batches and is included in `pmp` package as `SummarizedExperiemnt` class object `MTBLS79`. More detailed description of the dataset is available from @kirwan2014, [MTBLS79](https://www.ebi.ac.uk/metabolights/MTBLS79) and R man page. ```{r, eval=FALSE} help ("MTBLS79") ``` ```{r} data("MTBLS79") class <- MTBLS79$Class batch <- MTBLS79$Batch sample_order <- c(1:ncol(MTBLS79)) # Input data structure MTBLS79 class[1:10] batch[1:10] sample_order[1:10] ``` # Missing values Current implementation of `QCRSC` algorithm does support missing values in the input data object, but we would recommend to filter out features which were net reproducibly measured across quality control (QC) sample. In this example we will use 80% detection threshold. ```{r} data <- filter_peaks_by_fraction(df=MTBLS79, classes=class, method="QC", qc_label="QC", min_frac=0.8) ``` # Applying signal drift and batch effect correction Function `QCRSC` should be used to apply signal batch correction. Argument `df` should be `SummarizedExperiment` object or matrix-like R data structure with all `numeric()` values. Argument `order` should be `numeric()` vector containing sample injection order during analytical measurement and should be the same length as number of sample in the input object. Argument `batch` should be `numeric()` or `character()` vector containing values of sample batch identifier. If all samples were measured in 1 batch, then all values in the `batch` vector should be identical. Values for `classes` should be character vector containing sample class labels. Class label for quality control sample has to be `QC`. ```{r} corrected_data <- QCRSC(df=data, order=sample_order, batch=batch, classes=class, spar=0, minQC=4) ``` # Visual comparison of the results Function 'sbc_plot' provides visual comparison of the data before and after correction. For example we can check output for features '1', '5', and '30' in peak matrix. ```{r message=FALSE, warning=FALSE, fig.height=5, fig.width=5} plots <- sbc_plot (df=MTBLS79, corrected_df=corrected_data, classes=class, batch=batch, output=NULL, indexes=c(1, 5, 30)) plots ``` The scores plots of principal components analysis (PCA) before and after correction can be used to asses effects of data correction. In this example, probabilistic quotient normalisation (`PQN`) method is used to normalise data, k-nearest neighbours (`KNN`) for missing value imputation and `glog` for data scaling. All functions are availiable as a part of `r Biocpkg("pmp")` package. See @guida2016 for a more detailed review on common pre-processing steps and methods. ```{r, fig.width=6, fig.height=8} manual_color = c("#386cb0", "#ef3b2c", "#7fc97f", "#fdb462", "#984ea3", "#a6cee3", "#778899", "#fb9a99", "#ffff33") pca_data <- pqn_normalisation(MTBLS79, classes=class, qc_label="QC") pca_data <- mv_imputation(pca_data, method="KNN", k=5, rowmax=0.5, colmax=0.5, maxp=NULL, check_df=FALSE) pca_data <- glog_transformation(pca_data, classes=class, qc_label="QC") pca_corrected_data <- pmp::pqn_normalisation(corrected_data, classes=class, qc_label="QC") pca_corrected_data <- pmp::mv_imputation(pca_corrected_data, method="KNN", k=5, rowmax=0.5, colmax=0.5, maxp=NULL, check_df=FALSE) pca_corrected_data <- pmp::glog_transformation(pca_corrected_data, classes=class, qc_label="QC") pca_data <- prcomp(t(assay(pca_data)), center=TRUE, scale=FALSE) pca_corrected_data <- prcomp(t(assay(pca_corrected_data)), center=TRUE, scale=FALSE) # Calculate percentage of explained variance of the first two PC's exp_var_pca <- round(((pca_data$sdev^2)/sum(pca_data$sdev^2)*100)[1:2],2) exp_var_pca_corrected <- round(((pca_corrected_data$sdev^2) / sum(pca_corrected_data$sdev^2)*100)[1:2],2) plots <- list() plotdata <- data.frame(PC1=pca_data$x[, 1], PC2=pca_data$x[, 2], batch=as.factor(batch), class=class) plots[[1]] <- ggplot(data=plotdata, aes(x=PC1, y=PC2, col=batch)) + geom_point(size=2) + theme(panel.background=element_blank()) + scale_color_manual(values=manual_color) + ggtitle("PCA scores, before correction") + xlab(paste0("PC1 (", exp_var_pca[1] ," %)")) + ylab(paste0("PC2 (", exp_var_pca[2] ," %)")) plots[[2]] <- ggplot(data=plotdata, aes(x=PC1, y=PC2, col=class)) + geom_point(size=2) + theme(panel.background=element_blank()) + scale_color_manual(values=manual_color) + ggtitle("PCA scores, before correction") + xlab(paste0("PC1 (", exp_var_pca[1] ," %)")) + ylab(paste0("PC2 (", exp_var_pca[2] ," %)")) plotdata_corr <- data.frame(PC1=pca_corrected_data$x[, 1], PC2=pca_corrected_data$x[, 2], batch=as.factor(batch), class=class) plots[[3]] <- ggplot(data=plotdata_corr, aes(x=PC1, y=PC2, col=batch)) + geom_point(size=2) + theme(panel.background=element_blank()) + scale_color_manual(values=manual_color) + ggtitle("PCA scores, after correction") + xlab(paste0("PC1 (", exp_var_pca_corrected[1] ," %)")) + ylab(paste0("PC2 (", exp_var_pca_corrected[2] ," %)")) plots[[4]] <- ggplot(data=plotdata_corr, aes(x=PC1, y=PC2, col=class)) + geom_point(size=2) + theme(panel.background=element_blank()) + scale_color_manual(values=manual_color) + ggtitle("PCA scores, after correction") + xlab(paste0("PC1 (", exp_var_pca_corrected[1] ," %)")) + ylab(paste0("PC2 (", exp_var_pca_corrected[2] ," %)")) grid.arrange(ncol=2, plots[[1]], plots[[2]], plots[[3]], plots[[4]]) ``` # Session information ```{r} sessionInfo() ``` # References