regionReport 1.18.2
The bumphunter package can be used for methylation analyses where you are interested in identifying differentially methylated regions. The vignette explains in greater detail the data set we are using in this example.
## Load bumphunter
library('bumphunter')
## Loading required package: S4Vectors
## Loading required package: stats4
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## Filter, Find, Map, Position, Reduce, anyDuplicated, append,
## as.data.frame, basename, cbind, colnames, dirname, do.call,
## duplicated, eval, evalq, get, grep, grepl, intersect,
## is.unsorted, lapply, mapply, match, mget, order, paste, pmax,
## pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply,
## setdiff, sort, table, tapply, union, unique, unsplit, which,
## which.max, which.min
##
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:base':
##
## expand.grid
## Loading required package: IRanges
## Loading required package: GenomeInfoDb
## Loading required package: GenomicRanges
## Loading required package: foreach
## Loading required package: iterators
## Loading required package: locfit
## locfit 1.5-9.1 2013-03-22
## Create data from the vignette
pos <- list(pos1=seq(1, 1000, 35),
pos2=seq(2001, 3000, 35),
pos3=seq(1, 1000, 50))
chr <- rep(paste0('chr', c(1, 1, 2)), times = sapply(pos, length))
pos <- unlist(pos, use.names = FALSE)
## Find clusters
cl <- clusterMaker(chr, pos, maxGap = 300)
## Build simulated bumps
Indexes <- split(seq_along(cl), cl)
beta1 <- rep(0, length(pos))
for(i in seq(along=Indexes)){
ind <- Indexes[[i]]
x <- pos[ind]
z <- scale(x, median(x), max(x)/12)
beta1[ind] <- i*(-1)^(i+1)*pmax(1-abs(z)^3,0)^3 ##multiply by i to vary size
}
## Build data
beta0 <- 3 * sin(2 * pi * pos / 720)
X <- cbind(rep(1, 20), rep(c(0, 1), each = 10))
set.seed(23852577)
error <- matrix(rnorm(20 * length(beta1), 0, 1), ncol = 20)
y <- t(X[, 1]) %x% beta0 + t(X[, 2]) %x% beta1 + error
## Perform bumphunting
tab <- bumphunter(y, X, chr, pos, cl, cutoff=.5)
## [bumphunterEngine] Using a single core (backend: doSEQ, version: 1.4.4).
## [bumphunterEngine] Computing coefficients.
## [bumphunterEngine] Finding regions.
## [bumphunterEngine] Found 15 bumps.
## Explore data
lapply(tab, head)
## $table
## chr start end value area cluster indexStart indexEnd L
## 10 chr1 2316 2631 -1.5814747 15.8147473 2 39 48 10
## 7 chr2 451 551 1.5891293 4.7673878 3 68 70 3
## 2 chr1 456 526 1.0678828 3.2036485 1 14 16 3
## 5 chr1 2176 2211 0.7841794 1.5683589 2 35 36 2
## 6 chr1 2841 2841 1.2010184 1.2010184 2 54 54 1
## 4 chr1 771 771 0.7780902 0.7780902 1 23 23 1
## clusterL
## 10 29
## 7 20
## 2 29
## 5 29
## 6 29
## 4 29
##
## $coef
## [,1]
## [1,] 0.60960932
## [2,] -0.09052769
## [3,] -0.21482638
## [4,] 0.13053755
## [5,] -0.21723642
## [6,] 0.39934961
##
## $fitted
## [,1]
## [1,] 0.60960932
## [2,] -0.09052769
## [3,] -0.21482638
## [4,] 0.13053755
## [5,] -0.21723642
## [6,] 0.39934961
##
## $pvaluesMarginal
## [1] NA
Once we have the regions we can proceed to build the required GRanges
object.
library('GenomicRanges')
## Build GRanges with sequence lengths
regions <- GRanges(seqnames = tab$table$chr,
IRanges(start = tab$table$start, end = tab$table$end),
strand = '*', value = tab$table$value, area = tab$table$area,
cluster = tab$table$cluster, L = tab$table$L, clusterL = tab$table$clusterL)
## Assign chr lengths
data(hg19Ideogram, package = 'biovizBase')
seqlengths(regions) <- seqlengths(hg19Ideogram)[names(seqlengths(regions))]
## Explore the regions
regions
## GRanges object with 15 ranges and 5 metadata columns:
## seqnames ranges strand | value area
## <Rle> <IRanges> <Rle> | <numeric> <numeric>
## [1] chr1 2316-2631 * | -1.58147472668612 15.8147472668612
## [2] chr2 451-551 * | 1.58912926544627 4.76738779633882
## [3] chr1 456-526 * | 1.06788283103948 3.20364849311844
## [4] chr1 2176-2211 * | 0.784179442360784 1.56835888472157
## [5] chr1 2841 * | 1.20101842543356 1.20101842543356
## ... ... ... ... . ... ...
## [11] chr1 631 * | 0.618602646982714 0.618602646982714
## [12] chr1 1 * | 0.609609318450113 0.609609318450113
## [13] chr1 2911 * | -0.576423040796044 0.576423040796044
## [14] chr2 251 * | -0.556159535339166 0.556159535339166
## [15] chr1 2806 * | -0.521605772372843 0.521605772372843
## cluster L clusterL
## <numeric> <numeric> <integer>
## [1] 2 10 29
## [2] 3 3 20
## [3] 1 3 29
## [4] 2 2 29
## [5] 2 1 29
## ... ... ... ...
## [11] 1 1 29
## [12] 1 1 29
## [13] 2 1 29
## [14] 3 1 20
## [15] 2 1 29
## -------
## seqinfo: 2 sequences from an unspecified genome
Now that we have identified a set of differentially methylated regions we can proceed to creating the HTML report. Note that this report has less information than the DiffBind example because we don’t have a p-value variable.
## Load regionReport
library('regionReport')
## Make it so that the report will be available as a vignette
original <- readLines(system.file('regionExploration', 'regionExploration.Rmd',
package = 'regionReport'))
vignetteInfo <- c(
'vignette: >',
' %\\VignetteEngine{knitr::rmarkdown}',
' %\\VignetteIndexEntry{Basic genomic regions exploration}',
' %\\VignetteEncoding{UTF-8}'
)
new <- c(original[1:16], vignetteInfo, original[17:length(original)])
writeLines(new, 'regionReportBumphunter.Rmd')
## Now create the report
report <- renderReport(regions, 'Example bumphunter', pvalueVars = NULL,
densityVars = c('Area' = 'area', 'Value' = 'value',
'Cluster Length' = 'clusterL'), significantVar = NULL,
output = 'bumphunterExampleOutput', outdir = '.',
template = 'regionReportBumphunter.Rmd', device = 'png')
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
## Writing 12 Bibtex entries ... OK
## Results written to file './bumphunterExampleOutput.bib'
## processing file: bumphunterExampleOutput.Rmd
## No annotationPackage supplied. Trying org.Hs.eg.db.
## Loading required package: org.Hs.eg.db
##
## Getting TSS and TSE.
## Getting CSS and CSE.
## Getting exons.
## Annotating genes.
## Scale for 'x' is already present. Adding another scale for 'x', which will
## replace the existing scale.
## Warning in `[[.bibentry`(bib, "rmarkdown"): subscript out of bounds
## output file: bumphunterExampleOutput.knit.md
## /usr/bin/pandoc +RTS -K512m -RTS bumphunterExampleOutput.utf8.md --to html4 --from markdown+autolink_bare_uris+ascii_identifiers+tex_math_single_backslash+smart --output bumphunterExampleOutput.html --email-obfuscation none --self-contained --wrap preserve --standalone --section-divs --table-of-contents --toc-depth 3 --variable toc_float=1 --variable toc_selectors=h1,h2,h3 --variable toc_collapsed=1 --variable toc_smooth_scroll=1 --variable toc_print=1 --template /tmp/Rtmp2Eb4on/BiocStyle/template.html --no-highlight --variable highlightjs=1 --number-sections --css /home/biocbuild/bbs-3.9-bioc/R/library/BiocStyle/resources/html/bioconductor.css --variable 'theme:bootstrap' --include-in-header /tmp/Rtmp2Eb4on/rmarkdown-str2e117172526.html --mathjax --variable 'mathjax-url:https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --metadata pagetitle=bumphunterExampleOutput.utf8.md --variable code_folding=hide --variable code_menu=1
##
## Output created: bumphunterExampleOutput.html
## Clean up
file.remove('regionReportBumphunter.Rmd')
## [1] TRUE
You can view the final report here.
In case the link does not work, a pre-compiled version of this document and its corresponding report are available at leekgroup.github.io/regionReportSupp/.
## Date generated:
Sys.time()
## [1] "2019-06-18 21:06:34 EDT"
## Time spent making this page:
proc.time()
## user system elapsed
## 128.440 3.078 132.239
## R and packages info:
options(width = 120)
sessioninfo::session_info()
## ─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────
## setting value
## version R version 3.6.0 (2019-04-26)
## os Ubuntu 18.04.2 LTS
## system x86_64, linux-gnu
## ui X11
## language (EN)
## collate C
## ctype en_US.UTF-8
## tz America/New_York
## date 2019-06-18
##
## ─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## package * version date lib source
## acepack 1.4.1 2016-10-29 [2] CRAN (R 3.6.0)
## annotate 1.62.0 2019-06-18 [2] Bioconductor
## AnnotationDbi * 1.46.0 2019-06-18 [2] Bioconductor
## AnnotationFilter 1.8.0 2019-06-18 [2] Bioconductor
## assertthat 0.2.1 2019-03-21 [2] CRAN (R 3.6.0)
## backports 1.1.4 2019-04-10 [2] CRAN (R 3.6.0)
## base64enc 0.1-3 2015-07-28 [2] CRAN (R 3.6.0)
## bibtex 0.4.2 2017-06-30 [2] CRAN (R 3.6.0)
## Biobase * 2.44.0 2019-06-18 [2] Bioconductor
## BiocGenerics * 0.30.0 2019-06-18 [2] Bioconductor
## BiocManager 1.30.4 2018-11-13 [2] CRAN (R 3.6.0)
## BiocParallel 1.18.0 2019-06-18 [2] Bioconductor
## BiocStyle * 2.12.0 2019-06-18 [2] Bioconductor
## biomaRt 2.40.0 2019-06-18 [2] Bioconductor
## Biostrings 2.52.0 2019-06-18 [2] Bioconductor
## biovizBase 1.32.0 2019-06-18 [2] Bioconductor
## bit 1.1-14 2018-05-29 [2] CRAN (R 3.6.0)
## bit64 0.9-7 2017-05-08 [2] CRAN (R 3.6.0)
## bitops 1.0-6 2013-08-17 [2] CRAN (R 3.6.0)
## blob 1.1.1 2018-03-25 [2] CRAN (R 3.6.0)
## bookdown 0.11 2019-05-28 [2] CRAN (R 3.6.0)
## BSgenome 1.52.0 2019-06-18 [2] Bioconductor
## bumphunter * 1.26.0 2019-06-18 [2] Bioconductor
## checkmate 1.9.3 2019-05-03 [2] CRAN (R 3.6.0)
## cli 1.1.0 2019-03-19 [2] CRAN (R 3.6.0)
## cluster 2.0.9 2019-05-01 [2] CRAN (R 3.6.0)
## codetools 0.2-16 2018-12-24 [2] CRAN (R 3.6.0)
## colorspace 1.4-1 2019-03-18 [2] CRAN (R 3.6.0)
## crayon 1.3.4 2017-09-16 [2] CRAN (R 3.6.0)
## crosstalk 1.0.0 2016-12-21 [2] CRAN (R 3.6.0)
## curl 3.3 2019-01-10 [2] CRAN (R 3.6.0)
## data.table 1.12.2 2019-04-07 [2] CRAN (R 3.6.0)
## DBI 1.0.0 2018-05-02 [2] CRAN (R 3.6.0)
## DEFormats 1.12.0 2019-06-18 [2] Bioconductor
## DelayedArray 0.10.0 2019-06-18 [2] Bioconductor
## derfinder * 1.18.3 2019-06-18 [2] Bioconductor
## derfinderHelper 1.18.1 2019-06-18 [2] Bioconductor
## derfinderPlot * 1.18.1 2019-06-18 [2] Bioconductor
## DESeq2 1.24.0 2019-06-18 [2] Bioconductor
## dichromat 2.0-0 2013-01-24 [2] CRAN (R 3.6.0)
## digest 0.6.19 2019-05-20 [2] CRAN (R 3.6.0)
## doRNG 1.7.1 2018-06-22 [2] CRAN (R 3.6.0)
## dplyr 0.8.1 2019-05-14 [2] CRAN (R 3.6.0)
## DT * 0.7 2019-06-11 [2] CRAN (R 3.6.0)
## edgeR 3.26.4 2019-06-18 [2] Bioconductor
## ensembldb 2.8.0 2019-06-18 [2] Bioconductor
## evaluate 0.14 2019-05-28 [2] CRAN (R 3.6.0)
## foreach * 1.4.4 2017-12-12 [2] CRAN (R 3.6.0)
## foreign 0.8-71 2018-07-20 [2] CRAN (R 3.6.0)
## Formula 1.2-3 2018-05-03 [2] CRAN (R 3.6.0)
## genefilter 1.66.0 2019-06-18 [2] Bioconductor
## geneplotter 1.62.0 2019-06-18 [2] Bioconductor
## GenomeInfoDb * 1.20.0 2019-06-18 [2] Bioconductor
## GenomeInfoDbData 1.2.1 2019-04-26 [2] Bioconductor
## GenomicAlignments 1.20.1 2019-06-18 [2] Bioconductor
## GenomicFeatures * 1.36.1 2019-06-18 [2] Bioconductor
## GenomicFiles 1.20.0 2019-06-18 [2] Bioconductor
## GenomicRanges * 1.36.0 2019-06-18 [2] Bioconductor
## GGally 1.4.0 2018-05-17 [2] CRAN (R 3.6.0)
## ggbio * 1.32.0 2019-06-18 [2] Bioconductor
## ggplot2 * 3.2.0 2019-06-16 [2] CRAN (R 3.6.0)
## glue 1.3.1 2019-03-12 [2] CRAN (R 3.6.0)
## graph 1.62.0 2019-06-18 [2] Bioconductor
## gridExtra * 2.3 2017-09-09 [2] CRAN (R 3.6.0)
## gtable 0.3.0 2019-03-25 [2] CRAN (R 3.6.0)
## highr 0.8 2019-03-20 [2] CRAN (R 3.6.0)
## Hmisc 4.2-0 2019-01-26 [2] CRAN (R 3.6.0)
## hms 0.4.2 2018-03-10 [2] CRAN (R 3.6.0)
## htmlTable 1.13.1 2019-01-07 [2] CRAN (R 3.6.0)
## htmltools 0.3.6 2017-04-28 [2] CRAN (R 3.6.0)
## htmlwidgets 1.3 2018-09-30 [2] CRAN (R 3.6.0)
## httpuv 1.5.1 2019-04-05 [2] CRAN (R 3.6.0)
## httr 1.4.0 2018-12-11 [2] CRAN (R 3.6.0)
## IRanges * 2.18.1 2019-06-18 [2] Bioconductor
## iterators * 1.0.10 2018-07-13 [2] CRAN (R 3.6.0)
## jsonlite 1.6 2018-12-07 [2] CRAN (R 3.6.0)
## knitcitations 1.0.8 2017-07-04 [2] CRAN (R 3.6.0)
## knitr * 1.23 2019-05-18 [2] CRAN (R 3.6.0)
## knitrBootstrap 1.0.2 2018-05-24 [2] CRAN (R 3.6.0)
## labeling 0.3 2014-08-23 [2] CRAN (R 3.6.0)
## later 0.8.0 2019-02-11 [2] CRAN (R 3.6.0)
## lattice 0.20-38 2018-11-04 [2] CRAN (R 3.6.0)
## latticeExtra 0.6-28 2016-02-09 [2] CRAN (R 3.6.0)
## lazyeval 0.2.2 2019-03-15 [2] CRAN (R 3.6.0)
## limma 3.40.2 2019-06-18 [2] Bioconductor
## locfit * 1.5-9.1 2013-04-20 [2] CRAN (R 3.6.0)
## lubridate 1.7.4 2018-04-11 [2] CRAN (R 3.6.0)
## magrittr 1.5 2014-11-22 [2] CRAN (R 3.6.0)
## markdown 1.0 2019-06-07 [2] CRAN (R 3.6.0)
## Matrix 1.2-17 2019-03-22 [2] CRAN (R 3.6.0)
## matrixStats 0.54.0 2018-07-23 [2] CRAN (R 3.6.0)
## memoise 1.1.0 2017-04-21 [2] CRAN (R 3.6.0)
## mgcv * 1.8-28 2019-03-21 [2] CRAN (R 3.6.0)
## mime 0.7 2019-06-11 [2] CRAN (R 3.6.0)
## munsell 0.5.0 2018-06-12 [2] CRAN (R 3.6.0)
## nlme * 3.1-140 2019-05-12 [2] CRAN (R 3.6.0)
## nnet 7.3-12 2016-02-02 [2] CRAN (R 3.6.0)
## org.Hs.eg.db * 3.8.2 2019-06-18 [2] Bioconductor
## OrganismDbi 1.26.0 2019-06-18 [2] Bioconductor
## pillar 1.4.1 2019-05-28 [2] CRAN (R 3.6.0)
## pkgconfig 2.0.2 2018-08-16 [2] CRAN (R 3.6.0)
## pkgmaker 0.27 2018-05-25 [2] CRAN (R 3.6.0)
## plyr 1.8.4 2016-06-08 [2] CRAN (R 3.6.0)
## prettyunits 1.0.2 2015-07-13 [2] CRAN (R 3.6.0)
## progress 1.2.2 2019-05-16 [2] CRAN (R 3.6.0)
## promises 1.0.1 2018-04-13 [2] CRAN (R 3.6.0)
## ProtGenerics 1.16.0 2019-06-18 [2] Bioconductor
## purrr 0.3.2 2019-03-15 [2] CRAN (R 3.6.0)
## qvalue 2.16.0 2019-06-18 [2] Bioconductor
## R6 2.4.0 2019-02-14 [2] CRAN (R 3.6.0)
## RBGL 1.60.0 2019-06-18 [2] Bioconductor
## RColorBrewer * 1.1-2 2014-12-07 [2] CRAN (R 3.6.0)
## Rcpp 1.0.1 2019-03-17 [2] CRAN (R 3.6.0)
## RCurl 1.95-4.12 2019-03-04 [2] CRAN (R 3.6.0)
## RefManageR 1.2.12 2019-04-03 [2] CRAN (R 3.6.0)
## regionReport * 1.18.2 2019-06-18 [1] Bioconductor
## registry 0.5-1 2019-03-05 [2] CRAN (R 3.6.0)
## reshape 0.8.8 2018-10-23 [2] CRAN (R 3.6.0)
## reshape2 1.4.3 2017-12-11 [2] CRAN (R 3.6.0)
## rlang 0.3.4 2019-04-07 [2] CRAN (R 3.6.0)
## rmarkdown 1.13 2019-05-22 [2] CRAN (R 3.6.0)
## rngtools 1.3.1.1 2019-04-26 [2] CRAN (R 3.6.0)
## rpart 4.1-15 2019-04-12 [2] CRAN (R 3.6.0)
## Rsamtools 2.0.0 2019-06-18 [2] Bioconductor
## RSQLite 2.1.1 2018-05-06 [2] CRAN (R 3.6.0)
## rstudioapi 0.10 2019-03-19 [2] CRAN (R 3.6.0)
## rtracklayer 1.44.0 2019-06-18 [2] Bioconductor
## S4Vectors * 0.22.0 2019-06-18 [2] Bioconductor
## scales 1.0.0 2018-08-09 [2] CRAN (R 3.6.0)
## sessioninfo * 1.1.1 2018-11-05 [2] CRAN (R 3.6.0)
## shiny 1.3.2 2019-04-22 [2] CRAN (R 3.6.0)
## stringi 1.4.3 2019-03-12 [2] CRAN (R 3.6.0)
## stringr 1.4.0 2019-02-10 [2] CRAN (R 3.6.0)
## SummarizedExperiment 1.14.0 2019-06-18 [2] Bioconductor
## survival 2.44-1.1 2019-04-01 [2] CRAN (R 3.6.0)
## tibble 2.1.3 2019-06-06 [2] CRAN (R 3.6.0)
## tidyselect 0.2.5 2018-10-11 [2] CRAN (R 3.6.0)
## TxDb.Hsapiens.UCSC.hg19.knownGene * 3.2.2 2019-04-26 [2] Bioconductor
## VariantAnnotation 1.30.1 2019-06-18 [2] Bioconductor
## whisker * 0.3-2 2013-04-28 [2] CRAN (R 3.6.0)
## withr 2.1.2 2018-03-15 [2] CRAN (R 3.6.0)
## xfun 0.7 2019-05-14 [2] CRAN (R 3.6.0)
## XML 3.98-1.20 2019-06-06 [2] CRAN (R 3.6.0)
## xml2 1.2.0 2018-01-24 [2] CRAN (R 3.6.0)
## xtable 1.8-4 2019-04-21 [2] CRAN (R 3.6.0)
## XVector 0.24.0 2019-06-18 [2] Bioconductor
## yaml 2.2.0 2018-07-25 [2] CRAN (R 3.6.0)
## zlibbioc 1.30.0 2019-06-18 [2] Bioconductor
##
## [1] /tmp/RtmpkOavtq/Rinst17bd6aad58ea
## [2] /home/biocbuild/bbs-3.9-bioc/R/library