Package 'NormalyzerDE' April 16, 2019 | Title Evaluation of normalization methods and calculation of differential expression analysis statistics | |--| | Version 1.0.0 | | Maintainer Jakob Willforss < jakob.willforss@immun.lth.se> | | Author Jakob Willforss | | Description NormalyzerDE provides screening of normalization methods for LC-MS based expression data. It calculates a range of normalized matrices using both existing approaches and a novel time-segmented approach, calculates performance measures and generates an evaluation report. Furthermore, it provides an easy utility for Limma- or ANOVA- based differential expression analysis. | | Imports vsn, preprocessCore, limma, MASS, ape, car, ggplot2, methods,
Biobase, RcmdrMisc, raster, utils, stats, SummarizedExperiment,
matrixStats | | Suggests knitr, testthat, rmarkdown, roxygen2, hexbin | | VignetteBuilder knitr | | biocViews Normalization, MultipleComparison, Visualization, Bayesian, Proteomics, Metabolomics, DifferentialExpression | | License Artistic-2.0 | | Encoding UTF-8 | | RoxygenNote 6.1.0 | | <pre>URL https://github.com/ComputationalProteomics/NormalyzerDE</pre> | | Depends R (>= 3.5) | | git_url https://git.bioconductor.org/packages/NormalyzerDE | | git_branch RELEASE_3_8 | | git_last_commit 34d92b0 | | git_last_commit_date 2018-10-30 | | Date/Publication 2019-04-15 | | R topics documented: | | analyzeNormalizations | | | generateAnnotatedMatrix | 4 | |-------|---------------------------------|-----------| | | generatePlots | 4 | | | generateStatsReport | 6 | | | getRTNormalizedMatrix | 7 | | | getSmoothedRTNormalizedMatrix | 8 | | | getVerifiedNormalyzerObject | 9 | | | globalIntensityNormalization | 9 | | | loadData | 10 | | | loadDesign | 11 | | | meanNormalization | 11 | | | medianNormalization | 12 | | | normalyzer | 12 | | | normalyzerDE | 14 | | | NormalyzerEvaluationResults | 16 | | | NormalyzerResults-class | 17 | | | NormalyzerStatistics | 17 | | | normMethods | 18 | | | performCyclicLoessNormalization | 19 | | | performGlobalRLRNormalization | 19 | | | performQuantileNormalization | 20 | | | performSMADNormalization | 20 | | | performVSNNormalization | 21 | | | reduceDesignTechRep | 21 | | | reduceTechnicalReplicates | 22 | | | setupJobDir | 23 | | | setupRawContrastObject | 23 | | | setupRawDataObject | 24 | | | writeNormalizedDatasets | 24 | | | | | | Index | | 26 | analyzeNormalizations Calculate measures for normalization results ### Description This function prepares an NormalyzerEvaluationResults object containing the evaluation measures CV (coefficient of variance), MAD (median absolute deviation), average variance, significance measures (ANOVA between condition groups) and correlation between replicates. #### Usage ``` analyzeNormalizations(nr, categoricalAnova = FALSE) ``` ### **Arguments** $\begin{tabular}{ll} nr & Normalyzer\ results\ object\ with\ calculated\ results. \\ categorical Anova \end{tabular}$ Whether categorical or numerical (ordered) ANOVA should be calculated. ### Value Normalyzer results with attached evaluation results object. calculateContrasts 3 #### **Examples** ``` data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) normResults <- normMethods(normObj) normResultsWithEval <- analyzeNormalizations(normResults)</pre> ``` calculateContrasts Performs statistical comparisons between the supplied conditions. It uses the design matrix and data matrix in the supplied Normalyzer-Statistics object. A column is supplied specifying which of the columns in the design matrix that is used for deciding the sample groups. The comparisons vector specifies which pairwise comparisons between condition levels that are to be calculated. ### Description Optionally, a batch column can be specified allowing compensation for covariate variation in the statistical model. This is only compatible with a Limma-based statistical analysis. #### Usage ``` calculateContrasts(nst, comparisons, condCol, batchCol = NULL, splitter = "-", type = "limma") ## S4 method for signature 'NormalyzerStatistics' calculateContrasts(nst, comparisons, condCol, batchCol = NULL, splitter = "-", type = "limma") ``` #### **Arguments** | nst | Results evaluation object. | |-------------|----------------------------------------------------------------| | comparisons | String with comparisons for contrasts. | | condCol | Column name in design matrix containing condition information. | | batchCol | Column name in design matrix containing batch information. | | splitter | Character dividing contrast conditions. | | type | Type of statistical test (Limma or welch). | ### Value nst Statistics object with statistical measures calculated ``` data(example_stat_summarized_experiment) nst <- NormalyzerStatistics(example_stat_summarized_experiment) results <- calculateContrasts(nst, c("1-2", "2-3"), "group") resultsBatch <- calculateContrasts(nst, c("1-2", "2-3"), "group", "batch")</pre> ``` 4 generatePlots ``` generateAnnotatedMatrix ``` Generate an annotated data frame from statistics object #### **Description** Extracts key values (p-value, adjusted p-value, log2-fold change and average expression values) from an NormalyzerStatistics instance and appends these to the annotation- and data-matrices ### Usage ``` generateAnnotatedMatrix(nst) ``` #### **Arguments** nst NormalyzerDE statistics object. #### Value outDf Annotated statistics matrix ### Examples ``` data(example_stat_summarized_experiment) statObj <- NormalyzerStatistics(example_stat_summarized_experiment) statObj <- calculateContrasts(statObj, comparisons=c("1-2", "2-3"), condCol="group", type="limma") annotDf <- generateAnnotatedMatrix(statObj)</pre> ``` generatePlots Generates a number of visualizations for the performance measures calculated for the normalized matrices. These contain both general measures and direct comparisons for different normalization approaches. ### Description They include: #### Usage ``` generatePlots(nr, jobdir, plotRows = 3, plotCols = 4) ``` #### **Arguments** nr Normalyzer results object. jobdir Path to output directory for run. plotRows Number of plot rows. plotCols Number of plot columns. generatePlots 5 #### **Details** "Total intensity" Barplot showing the summed intensity in each sample for thelog2-transformed data "Total missing" Barplot showing the number of missing values found in each sample for the log2-tranformed data Log2-MDS plot: MDS plot where data is reduced to two dimensions allowing inspection of the main global changes in the data PCV - Intragroup: Mean of intragroup CV of all replicate groups PMAD - Intragroup: Mean of intragroup median absolute deviation across replicate groups PEV - Intragroup: Mean of intragroup pooled estimate of variance across the replicate groups Relative PCV, PMAD and PEV compared to log2: The results from PCV, PMAD and PEV from all normalized data compared to the log2 data Stable variables plot: 5 analysis of log2 transformed data. Thereafter, global CV of these variables is estimated from different normalized datasets. A plot of global CV of the stable variables from all datasets on the y-axis and PCV-compared to log2 on the x-axis is generated. CV vs Raw Intensity plots: For the first replicate group in each of the normalized dataset, a plot of PCV of each variable compared to the average intensity of the variable in the replicate group is plotted. MA plots: Plotted using the plotMA function of the limma package. The first sample in each dataset is plotted against the average of the replicate group that sample belong to. Scatterplots: The first two samples from each dataset are plotted. Q-Q plots: QQ-plots are plotted for the first sample in each normalized dataset. Boxplots: Boxplots for all samples are plotted and colored according to the replicate grouping. Relative Log Expression (RLE) plots: Relative log expression value plots. Ratio between the expression of the variable and the median expression of this variable across all samples. The samples should be aligned around zero. Any deviation would indicate discrepancies in the data. Density plots: Density distributions for each sample using the density function. Can capture outliers (if single densities lies far from the others) and see if there is batch effects in the dataset (if for instance there is two clear collections of lines in the data). MDS plots Multidimensional scaling plot using the cmdscale() function from the stats package. Is often able to show whether replicates group together, and whether there are any clear outliers in the data. MeanSDplots Displays the standard deviation values against values ordered according to mean. If no dependency on mean is present (as is desired) a flat red line is shown. Pearson and Spearman correlation Mean of intragroup Pearson and Spearman correlation values for each method. Dendograms Generated using the hclust function. Data is centered and scaled prior to analysis. Coloring of replicates is done using as.phylo from the ape package. P-value histograms Histogram plots of p-values after calculating an ANOVA between different condition groups. If no effect is present in the data a flat distribution is expected. If an effect is present a flat distribution is still expected, but with a sharp peak close to zero. If other effects are present it might indicate that the data doesn't support the assumptions of ANOVA, for instance if there are batch effects present in the data. #### Value None 6 generateStatsReport #### **Examples** ``` data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) normResults <- normMethods(normObj) normResultsWithEval <- analyzeNormalizations(normResults) outputDir <- tempdir() generatePlots(normResultsWithEval, outputDir)</pre> ``` generateStatsReport Generate full output report plot document. Plots p-value histograms for each contrast in the NormalyzerStatistics instance and writes these to a PDF report. #### **Description** Generate full output report plot document. Plots p-value histograms for each contrast in the NormalyzerStatistics instance and writes these to a PDF report. #### Usage ``` generateStatsReport(nst, jobName, jobDir, plotRows = 3, plotCols = 4) ``` #### **Arguments** nst NormalyzerDE statistics object. jobName Name of processing run. jobDir Path to output directory. plotRows Number of plot rows. plotCols Number of plot columns. #### Value None ``` data(example_stat_summarized_experiment) statObj <- NormalyzerStatistics(example_stat_summarized_experiment) statObj <- calculateContrasts(statObj, comparisons=c("1-2", "2-3"), condCol="group", type="limma") outputDir <- tempdir() generateStatsReport(statObj, "jobName", outputDir)</pre> ``` getRTNormalizedMatrix getRTNormalizedMatrix Perform RT-segmented normalization by performing the supplied normalization over retention-time sliced data #### **Description** The function orders the retention times and steps through them using the supplied step size (in minutes). If smaller than a fixed lower boundary the window is expanded to ensure a minimum amount of data in each normalization step. An offset can be specified which can be used to perform multiple RT-segmentations with partial overlapping windows. ### Usage ``` getRTNormalizedMatrix(rawMatrix, retentionTimes, normMethod, stepSizeMinutes = 1, windowMinCount = 100, offset = 0) ``` #### **Arguments** rawMatrix Target matrix to be normalized retentionTimes Vector of retention times corresponding to rawMatrix normMethod The normalization method to apply to the time windows stepSizeMinutes Size of windows to be normalized windowMinCount Minimum number of values for window to not be expanded. offset Whether time window should shifted half step size ### Value Normalized matrix ``` data(example_data_small) data(example_design_small) data(example_data_only_values) dataMat <- example_data_only_values retentionTimes <- as.numeric(example_data[, "Average.RT"]) performCyclicLoessNormalization <- function(rawMatrix) { log2Matrix <- log2(rawMatrix) normMatrix <- limma::normalizeCyclicLoess(log2Matrix, method="fast") colnames(normMatrix) <- colnames(rawMatrix) normMatrix } rtNormMat <- getRTNormalizedMatrix(dataMat, retentionTimes, performCyclicLoessNormalization, stepSizeMinutes=1, windowMinCount=100)</pre> ``` ``` getSmoothedRTNormalizedMatrix ``` Generate multiple RT time-window normalized matrices where one is shifted. Merge them using a specified method (mean or median) and return the result. #### **Description** Uses the function getRTNormalizedMatrix to generate multiple normalized matrices which are shifted respective to each other and finally merged into a single matrix. This could potentially reduce effect of fluctuations within individual windows. #### Usage ``` getSmoothedRTNormalizedMatrix(rawMatrix, retentionTimes, normMethod, stepSizeMinutes, windowShifts = 2, windowMinCount = 100, mergeMethod = "mean") ``` ### **Arguments** ``` rawMatrix Target matrix to be normalized retentionTimes Vector of retention times corresponding to rawMatrix normMethod The normalization method to apply to the time windows stepSizeMinutes Size of windows to be normalized windowShifts Number of frame shifts. windowMinCount Minimum number of features within window. mergeMethod Layer merging approach. Mean or median. ``` #### Value Normalized matrix ``` data(example_data_small) data(example_data_only_values) data(example_design_small) retentionTimes <- as.numeric(example_data[, "Average.RT"]) dataMat <- example_data_only_values performCyclicLoessNormalization <- function(rawMatrix) { log2Matrix <- log2(rawMatrix) normMatrix <- limma::normalizeCyclicLoess(log2Matrix, method="fast") colnames(normMatrix) <- colnames(rawMatrix) normMatrix } rtNormMat <- getSmoothedRTNormalizedMatrix(dataMat, retentionTimes, performCyclicLoessNormalization, stepSizeMinutes=1, windowMinCount=100, windowShifts=2, mergeMethod="median")</pre> ``` ``` getVerifiedNormalyzerObject ``` Verify that input data is in correct format, and if so, return a generated NormalyzerDE data object from that input data #### **Description** This function performs a number of checks on the input data and provides informative error messages if the data isn't fulfilling the required format. Checks include verifying that the design matrix matches to the data matrix, that the data matrix contains valid numbers and that samples have enough values for analysis ### Usage ``` getVerifiedNormalyzerObject(jobName, summarizedExp, threshold = 15, omitSamples = FALSE, requireReplicates = TRUE, quiet = FALSE) ``` #### **Arguments** jobName Name of ongoing run. summarizedExp Summarized experiment input object threshold Minimum number of features. omitSamples Automatically omit invalid samples from analysis. requireReplicates Require there to be at least to samples per condition quiet Don't print output messages during processing #### Value Normalyzer data object representing verified input data. ### **Examples** ``` data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment)</pre> ``` ``` globalIntensityNormalization ``` The normalization divides the intensity of each variable in a sample with the sum of intensities of all variables in the sample and multiplies with the median of sum of intensities of all variables in all samples. The normalized data is then log2-transformed. ### **Description** The normalization divides the intensity of each variable in a sample with the sum of intensities of all variables in the sample and multiplies with the median of sum of intensities of all variables in all samples. The normalized data is then log2-transformed. 10 loadData #### Usage ``` globalIntensityNormalization(rawMatrix) ``` #### **Arguments** rawMatrix Target matrix to be normalized #### Value Normalized and log-transformed matrix ### **Examples** ``` data(example_data_only_values_small) normMatrix <- globalIntensityNormalization(example_data_only_values)</pre> ``` loadData Load raw data into dataframe ### Description General function which allows specifying different types of input data including "proteios", "maxquant-pep" (peptide output from MaxQuant) and "maxquantprot" (protein output from MaxQuant) formats. ### Usage ``` loadData(dataPath, inputFormat = "default", zeroToNA = FALSE) ``` #### **Arguments** dataPath File path to design matrix. inputFormat If input is given in standard NormalyzerDE format, Proteios format or in MaxQuant protein or peptide format zeroToNA Automatically convert zeroes to NA values #### Value rawData Raw data loaded into data frame ``` ## Not run: df <- loadData("data.tsv") ## End(Not run)</pre> ``` loadDesign 11 | loadDesign | Load raw design into dataframe | |------------|--------------------------------| | | | #### **Description** Takes a design path, loads the matrix and ensures that the sample column is in character format and that the group column is in factor format. #### Usage ``` loadDesign(designPath, sampleCol = "sample", groupCol = "group") ``` #### **Arguments** designPath File path to design matrix. sampleCol Column name for column containing sample names. groupCol Column name for column containing condition levels. ### Value designMatrix Design data loaded into data frame #### **Examples** ``` ## Not run: df <- loadDesign("design.tsv") ## End(Not run)</pre> ``` meanNormalization Intensity of each variable in a given sample is divided by the mean of sum of intensities of all variables in the sample and then multiplied by the mean of sum of intensities of all variables in all samples. The normalized data is then transformed to log2. #### **Description** Intensity of each variable in a given sample is divided by the mean of sum of intensities of all variables in the sample and then multiplied by the mean of sum of intensities of all variables in all samples. The normalized data is then transformed to log2. ### Usage ``` meanNormalization(rawMatrix) ``` #### **Arguments** rawMatrix Target matrix to be normalized 12 normalyzer #### Value Normalized and log-transformed matrix ### **Examples** ``` data(example_data_only_values_small) normMatrix <- meanNormalization(example_data_only_values)</pre> ``` medianNormalization Intensity of each variable in a given sample is divided by the median of intensities of all variables in the sample and then multiplied by the mean of median of sum of intensities of all variables in all samples. The normalized data is then log2-transformed. #### **Description** Intensity of each variable in a given sample is divided by the median of intensities of all variables in the sample and then multiplied by the mean of median of sum of intensities of all variables in all samples. The normalized data is then log2-transformed. ### Usage ``` medianNormalization(rawMatrix) ``` ### **Arguments** rawMatrix Target matrix to be normalized ### Value Normalized and log-transformed matrix #### **Examples** ``` data(example_data_only_values_small) normMatrix <- medianNormalization(example_data_only_values)</pre> ``` normalyzer NormalyzerDE pipeline entry point ### Description This function is the main execution point for the normalization part of the NormalyzerDE analysis pipeline. When executed it performs the following steps: normalyzer 13 #### **Usage** ``` normalyzer(jobName, designPath = NULL, dataPath = NULL, experimentObj = NULL, outputDir = ".", forceAllMethods = FALSE, omitLowAbundSamples = FALSE, sampleAbundThres = 15, requireReplicates = TRUE, normalizeRetentionTime = TRUE, plotRows = 3, plotCols = 4, zeroToNA = FALSE, sampleColName = "sample", groupColName = "group", inputFormat = "default", skipAnalysis = FALSE, quiet = FALSE, rtStepSizeMinutes = 1, rtWindowMinCount = 100, rtWindowShifts = 1, rtWindowMergeMethod = "mean") ``` #### **Arguments** jobName Give the current run a name. designPath Path to file containing design matrix. dataPath Specify an output directory for generated files. Defaults to current working directory. experimentObj SummarizedExperiment object, can be provided as input as alternative to 'de- signPath' and 'dataPath' outputDir Directory where results folder is created. forceAllMethods Debugging function. Run all normalizations even if they aren't in the recom- mended range of number of values omitLowAbundSamples Automatically remove samples with fewer non-NA values compared to threshold given by sampleAbundThres. Will otherwise stop with error message if such sample is encountered. sampleAbundThres Threshold for omitting low-abundant samples. Is by default set to 15. requireReplicates Require multiple samples per condition to pass input validation. normalizeRetentionTime Perform normalizations over retention time. plotRows Number of plot-rows in output documentation. plotCols Number of plot-columns in output documentation. zeroToNA Convert zero values to NA. sampleColName Column name in design matrix containing sample IDs. groupColName Column name in design matrix containing condition IDs. inputFormat Type of input format. skipAnalysis Only perform normalization steps. quiet Omit status messages printed during run rtStepSizeMinutes Retention time normalization window size. rtWindowMinCount Minimum number of datapoints in each retention-time segment. rtWindowShifts Number of layered retention time normalized windows. rtWindowMergeMethod Merge approach for layered retention time windows. 14 normalyzerDE #### **Details** 1: Loads the data matrix containing expression values and optional annotations, as well as the design matrix containing the experimental setup 2: Performs input data verification to validate that the data is in correct format. This step captures many common formatting errors. It returns an instance of the NormalyzerDataset class representing the unprocessed data. 3: Calculate a range of normalizations for the dataset. The result is provided as a NormalyzerResults object containing the resulting data matrices from each normalization. 4: Analyze the normalizations and generate performance measures for each of the normalized datasets. This result is provided as a NormalyzerEvaluationResults object. 5: Output the matrices containing the normalized datasets to files. 6: Generate visualizations overviewing the performance measures and write them to a PDF report. #### Value None #### **Examples** ``` ## Not run: data_path <- system.file(package="NormalyzerDE", "extdata", "tiny_data.tsv")</pre> design_path <- system.file(package="NormalyzerDE", "extdata", "tiny_design.tsv")</pre> out_dir <- tempdir()</pre> normalyzer(jobName="my_jobname", designPath=design_path, dataPath=data_path, outputDir=out_dir) normalyzer("my_jobname", designMatrix="design.tsv", "data.tsv", outputDir="path/to/output", normalizeRetentionTime=TRUE, retentionTimeWindow=2) normalyzer("my_jobname", designMatrix="design.tsv", "data.tsv", outputDir="path/to/output", inputFormat="maxquantprot") ## End(Not run) ``` normalyzerDE NormalyzerDE differential expression ### Description Performs differential expression analysis on a normalization matrix. This command executes a pipeline processing the data and generates an annotated normalization matrix and a report containing p-value histograms for each of the performed comparisons. normalyzerDE 15 #### Usage ``` normalyzerDE(jobName, comparisons, designPath = NULL, dataPath = NULL, experimentObj = NULL, outputDir = ".", logTrans = FALSE, type = "limma", sampleCol = "sample", condCol = "group", batchCol = NULL, techRepCol = NULL, leastRepCount = 1, quiet = FALSE) ``` #### **Arguments** jobName Name of job comparisons Character vector containing target contrasts. If comparing condA with condB, then the vector would be c("condA-condB") designPath File path to design matrix dataPath File path to normalized matrix experimentObj SummarizedExperiment object, can be provided as input as alternative to 'de- signPath' and 'dataPath' outputDir Path to output directory logTrans Log transform the input (needed if providing non-logged input) type Type of statistical comparison, "limma" or "welch" sampleCol Design matrix column header for column containing sample IDs condCol Design matrix column header for column containing sample conditions batchCol Provide an optional column for inclusion of possible batch variance in the model techRepCol Design matrix column header for column containing technical replicates leastRepCount Minimum required replicate count quiet Omit status messages printed during run ### **Details** When executed, it performs the following steps: 1: Read the data and the design matrices into dataframes. 2: Generate an instance of the NormalyzerStatistics class representing the data and their statistical comparisons. 3: Optionally reduce technical replicates in both the data matrix and the design matrix 4: Calculate statistical contrats between supplied groups 5: Generate an annotated version of the original dataframe where columns containing statistical key measures have been added 6: Write the table to file 7: Generate a PDF report displaying p-value histograms for each calculated contrast ### Value None ``` data_path <- system.file(package="NormalyzerDE", "extdata", "tiny_data.tsv") design_path <- system.file(package="NormalyzerDE", "extdata", "tiny_design.tsv") out_dir <- tempdir() normalyzerDE(jobName="my_jobname", comparisons=c("4-5"), designPath=design_path,</pre> ``` ``` dataPath=data_path, outputDir=out_dir, condCol="group") ``` NormalyzerEvaluationResults Representation of evaluation results by calculating performance measures for an an NormalyzerResults instance #### **Description** Contains the resulting information from the processing which subsequently can be used to generate the quality assessment report. ### Usage ``` NormalyzerEvaluationResults(nr) NormalyzerEvaluationResults(nr) ``` #### **Arguments** nr NormalyzerResults object #### Value nds Generated NormalyzerEvaluationResults instance #### **Slots** avgcvmem Average coefficient of variance per method avgcvmempdiff Percentage difference of mean coefficient of variance compared to log2-transformed data featureCVPerMethod CV calculated per feature and normalization method. avgmadmem Average median absolute deviation avgmadmempdiff Percentage difference of median absolute deviation compared to log2-transformed data avgvarmem Average variance per method avgvarmempdiff Percentage difference of mean variance compared to log2-transformed data lowVarFeaturesCVs List of 5 for log2-transformed data lowVarFeaturesCVsPercDiff Coefficient of variance for least variable entries anovaP ANOVA calculated p-values repCorPear Within group Pearson correlations repCorSpear Within group Spearman correlations ``` data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) normResults <- normMethods(normObj) normEval <- NormalyzerEvaluationResults(normResults)</pre> ``` NormalyzerResults-class Representation of the results from performing normalization over a dataset ### **Description** It is linked to a NormalyzerDataset instance representing the raw data which has been processed. After performing evaluation it also links to an instance of NormalyzerEvaluationResults representing the results from the evaluation. #### **Slots** normalizations SummarizedExperiment object containing calculated normalization results nds Normalyzer dataset representing run data ner Normalyzer evaluation results for running extended normalizations NormalyzerStatistics Class representing a dataset for statistical processing in NormalyzerDE ### Description Is initialized with an annotation matrix, a data matrix and a design data frame. This object can subsequently be processed to generate statistical values and in turn used to write a full matrix with additional statistical information as well as a graphical report of the comparisons. #### Usage ``` NormalyzerStatistics(experimentObj, conditionCol = "group", logTrans = FALSE, leastRepCount = 2) NormalyzerStatistics(experimentObj, conditionCol = "group", logTrans = FALSE, leastRepCount = 2) ``` ### **Arguments** ${\tt experimentObj} \quad Instance \ of \ Summarized Experiment \ containing \ matrix \ and \ design \ information$ as column data conditionCol Column in column data containing the condition information for which contrasts will be performed logTrans Whether the input data should be log transformed leastRepCount Least replicates in each group to be retained for contrast calculations ### Value nds Generated NormalyzerStatistics instance 18 normMethods #### **Slots** ``` annotMat Matrix containing annotation information dataMat Matrix containing (normalized) expression data filteredDataMat Filtered matrix with low-count rows removed designDf Data frame containing design conditions filteringContrast Vector showing which entries are filtered (due to low count) pairwiseCompsP List with P-values for pairwise comparisons pairwiseCompsFdr List with FDR-values for pairwise comparisons pairwiseCompsAve List with average expression values pairwiseCompsFold List with log2 fold-change values for pairwise comparisons ``` ### **Examples** ``` data(example_stat_summarized_experiment) nst <- NormalyzerStatistics(example_stat_summarized_experiment)</pre> ``` normMethods Perform normalizations on Normalyzer dataset #### **Description** Perform normalizations on Normalyzer dataset #### Usage ``` normMethods(nds, forceAll = FALSE, normalizeRetentionTime = TRUE, quiet = FALSE, rtStepSizeMinutes = 1, rtWindowMinCount = 100, rtWindowShifts = 1, rtWindowMergeMethod = "mean") ``` #### **Arguments** nds Normalyzer dataset object. forceAll Force all methods to run despite not qualifying for thresholds. ${\tt normalize} Retention {\tt Time}$ Perform retention time based normalization methods. quiet Prevent diagnostic output rtStepSizeMinutes Retention time normalization window size. rtWindowMinCount Minimum number of datapoints in each retention-time segment. rtWindowShifts Number of layered retention time normalized windows. rtWindowMergeMethod Merge approach for layered retention time windows. #### Value Returns Normalyzer results object with performed analyzes assigned as attributes #### **Examples** ``` data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) normResults <- normMethods(normObj)</pre> ``` ${\tt performCyclicLoessNormalization}$ Cyclic Loess normalization #### **Description** Log2 transformed data is normalized by Loess method using the function "normalizeCyclicLoess". Further information is available for the function "normalizeCyclicLoess" in the Limma package. #### Usage ``` performCyclicLoessNormalization(rawMatrix) ``` #### **Arguments** rawMatrix Target matrix to be normalized #### Value Normalized matrix #### **Examples** ``` data(example_data_only_values_small) normMatrix <- performCyclicLoessNormalization(example_data_only_values)</pre> ``` ${\tt performGlobalRLRNormalization}$ Global linear regression normalization ### Description Log2 transformed data is normalized by robust linear regression using the function "rlm" from the MASS package. ### Usage ``` {\tt performGlobalRLRNormalization} ({\tt rawMatrix}) ``` #### **Arguments** rawMatrix Target matrix to be normalized #### Value Normalized matrix #### **Examples** ``` data(example_data_only_values_small) normMatrix <- performGlobalRLRNormalization(example_data_only_values)</pre> ``` performQuantileNormalization Quantile normalization is performed by the function "normalize.quantiles" from the package preprocessCore. ### **Description** It makes the assumption that the data in different samples should originate from an identical distribution. It does this by generating a reference distribution and then scaling the other samples accordingly. ### Usage ``` performQuantileNormalization(rawMatrix) ``` #### **Arguments** rawMatrix Target matrix to be normalized #### Value Normalized matrix ### **Examples** ``` data(example_data_only_values_small) normMatrix <- performQuantileNormalization(example_data_only_values)</pre> ``` performSMADNormalization Median absolute deviation normalization Normalization subtracts the median and divides the data by the median absolute deviation (MAD). ### Description Median absolute deviation normalization Normalization subtracts the median and divides the data by the median absolute deviation (MAD). #### Usage ``` performSMADNormalization(rawMatrix) ``` #### **Arguments** rawMatrix Target matrix to be normalized #### Value Normalized matrix #### **Examples** ``` data(example_data_only_values_small) normMatrix <- performSMADNormalization(example_data_only_values)</pre> ``` performVSNNormalization Log2 transformed data is normalized using the function "justvsn" from the VSN package. #### **Description** The VSN (Variance Stabilizing Normalization) attempts to transform the data in such a way that the variance remains nearly constant over the intensity spectrum ### Usage ``` performVSNNormalization(rawMatrix) ``` #### **Arguments** rawMatrix Target matrix to be normalized ### Value Normalized matrix ### **Examples** ``` data(example_data_only_values_small) normMatrix <- performVSNNormalization(example_data_only_values)</pre> ``` reduceDesignTechRep Remove technical replicates from design matrix. ### Description Technical replicates are specified as duplicate strings. The first sample name corresponding for each technical replicate group is retained. ### Usage ``` reduceDesignTechRep(designMat, techRepGroups) ``` ### **Arguments** designMat NormalyzerDE design matrix techRepGroups Technical replicates vector #### Value collDesignDf Reduced design matrix #### **Examples** ``` designDf <- data.frame(sample=c("a1", "a2", "b1", "b2", "c1", "c2", "d1", "d2"), group=c(rep("A", 4), rep("B", 4)), techrep=c("a", "a", "b", "b", "c", "c", "d", "d")) statObj <- reduceDesignTechRep(designDf, designDf$techrep)</pre> ``` reduceTechnicalReplicates Remove technical replicates from data matrix ### **Description** Collapses sample values into their average. If only one value is present due to NA-values in other technical replicates, then that value is used. #### Usage ``` reduceTechnicalReplicates(dataMat, techRepGroups) ``` #### **Arguments** ``` dataMat NormalyzerDE data matrix techRepGroups Technical replicates vector ``` ### Value collDataMat Reduced data matrix ``` techRep <- c("a", "a", "b", "b", "c", "c", "d", "d") testData <- data.frame(c(1,1,1), c(1,2,1), c(3,3,3), c(5,3,3), c(5,5,4), c(5,5,5), c(7,7,7), c(7,9,7)) colnames(testData) <- c("a1", "a2", "b1", "b2", "c1", "c2", "d1", "d2") statObj <- reduceTechnicalReplicates(testData, techRep)</pre> ``` setupJobDir 23 setupJobDir Create empty directory for run #### **Description** Creates a directory at provided path named to the jobname. #### Usage ``` setupJobDir(jobName, outputDir) ``` ### Arguments jobName Name of the run. outputDir Path to directory where to create the output directory. #### Value Path to newly created directory. #### **Examples** ``` setupJobDir("job_name", "path/to/outdir") ``` setupRawContrastObject Prepare SummarizedExperiment object for statistics data ### **Description** Prepare SummarizedExperiment object for statistics data #### Usage ``` setupRawContrastObject(dataPath, designPath, sampleColName) ``` #### **Arguments** dataPath Path to raw data matrix designPath Path to design matrix sampleColName Name for column in design matrix containing sample names #### Value experimentObj Prepared instance of SummarizedExperiment ``` data_path <- system.file(package="NormalyzerDE", "extdata", "tiny_data.tsv") design_path <- system.file(package="NormalyzerDE", "extdata", "tiny_design.tsv") sumExpObj <- setupRawContrastObject(data_path, design_path, "sample")</pre> ``` 24 writeNormalizedDatasets | setupRawDataObject Prepare SummarizedExperiment object for raw data to be normalized containing data, design and annotation information | setupRawDataObject | | |-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|--| |-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|--| #### **Description** Prepare SummarizedExperiment object for raw data to be normalized containing data, design and annotation information #### Usage ``` setupRawDataObject(dataPath, designPath, inputFormat = "default", zeroToNA = FALSE, sampleColName = "sample", groupColName = "group") ``` ### **Arguments** dataPath File path to data matrix. designPath File path to design matrix. inputFormat Type of matrix for data, can be either 'default', 'proteios', 'maxquantprot' or 'maxquantpep' zeroToNA If TRUE zeroes in the data is automatically converted to NA values sampleColName Column name for column containing sample names groupColName Column name for column containing condition levels #### Value experimentObj SummarizedExperiment object loaded with the data #### **Examples** ``` data_path <- system.file(package="NormalyzerDE", "extdata", "tiny_data.tsv") design_path <- system.file(package="NormalyzerDE", "extdata", "tiny_design.tsv") df <- setupRawDataObject(data_path, design_path)</pre> ``` write Normalized Datasets Write normalization matrices to file #### **Description** Outputs each of the normalized datasets to the specified directory. #### Usage ``` writeNormalizedDatasets(nr, jobdir, includePairwiseComparisons = FALSE, includeCvCol = FALSE, includeAnovaP = FALSE, normSuffix = "-normalized.txt", rawdataName = "submitted_rawdata.txt") ``` writeNormalizedDatasets 25 ### **Arguments** nr Results object. jobdir Path to output directory. include Pairwise Comparisons Include p-values for pairwise comparisons. includeCvCol Include CV column in output. includeAnovaP Include ANOVA p-value in output. normSuffix String used to name output together with normalization names. rawdataName Name of output raw data file. ### Value None ``` data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) normResults <- normMethods(normObj) normResultsWithEval <- analyzeNormalizations(normResults) outputDir <- tempdir() writeNormalizedDatasets(normResultsWithEval, outputDir)</pre> ``` ## **Index** ``` analyzeNormalizations, 2 calculateContrasts, 3 calculateContrasts,NormalyzerStatistics-method (calculateContrasts), 3 generateAnnotatedMatrix, 4 generatePlots, 4 generateStatsReport, 6 getRTNormalizedMatrix, 7 getSmoothedRTNormalizedMatrix, 8 getVerifiedNormalyzerObject, 9 globalIntensityNormalization, 9 loadData, 10 loadDesign, 11 meanNormalization, 11 medianNormalization, 12 normalyzer, 12 normalyzerDE, 14 NormalyzerEvaluationResults, 16 NormalyzerResults (NormalyzerResults-class), 17 NormalyzerResults-class, 17 {\tt NormalyzerStatistics}, 17 normMethods, 18 \verb"performCyclicLoessNormalization", 19 performGlobalRLRNormalization, 19 performQuantileNormalization, 20 performSMADNormalization, 20 {\tt performVSNNormalization}, {\tt 21} reduceDesignTechRep, 21 reduceTechnicalReplicates, 22 setupJobDir, 23 setupRawContrastObject, 23 setupRawDataObject, 24 writeNormalizedDatasets, 24 ```