--- title: "seqcombo for sequence recombination" author: "Guangchuang Yu, The University of Hong Kong" date: "`r Sys.Date()`" bibliography: seqcombo.bib csl: nature.csl output: prettydoc::html_pretty: theme: cayman highlight: github toc: true pdf_document: toc: true vignette: > %\VignetteIndexEntry{seqcombo introduction} %\VignetteEngine{knitr::rmarkdown} %\usepackage[utf8]{inputenc} --- ```{r style, echo=FALSE, results="asis", message=FALSE} knitr::opts_chunk$set(tidy = FALSE, message = FALSE) ``` ```{r echo=FALSE, results="hide", message=FALSE} library("seqcombo") ``` # Sequence difference plot Here we use the data published in `Potato Research`[@chang_complete_2015] as an example. ```{r} fas <- list.files(system.file("examples","GVariation", package="seqcombo"), pattern="fas", full.names=TRUE) fas ``` The input fasta file should contains two aligned sequences. User need to specify which sequence (1 or 2, 1 by default) as reference. The `seqdiff` function will parse the fasta file and calculate the nucleotide differences by comparing the non-reference one to reference. ```{r} x1 <- seqdiff(fas[1], reference=1) x1 ``` We can visualize the differences by `plot` method: ```{r fig.height=4, fig.width=12} plot(x1) ``` We can parse several files and visualize them simultaneously. ```{r fig.height=12, fig.width=12} x <- lapply(fas, seqdiff) plts <- lapply(x, plot) plot_grid(plotlist=plts, ncol=1, labels=LETTERS[1:3]) ``` # Sequence similarity plot ```{r} fas <- system.file("examples/GVariation/sample_alignment.fa", package="seqcombo") simplot(fas, 'CF_YL21') ``` # Session info Here is the output of `sessionInfo()` on the system on which this document was compiled: ```{r echo=FALSE} sessionInfo() ``` # References