## ----style, eval=TRUE, echo=FALSE, results="asis"------------------------ BiocStyle::latex() ## ----env, include=FALSE, echo=FALSE, cache=FALSE------------------------- library("knitr") opts_chunk$set(fig.align = 'center', fig.show = 'hold', par = TRUE, prompt = TRUE, eval = TRUE, comment = NA) options(replace.assign = TRUE, width = 55) suppressPackageStartupMessages(library("MSnbase")) suppressWarnings(suppressPackageStartupMessages(library("pRoloc"))) suppressPackageStartupMessages(library("pRolocdata")) ## suppressPackageStartupMessages(library("class")) suppressPackageStartupMessages(library("xtable")) ## ----pRolocdata---------------------------------------------------------- library("pRolocdata") data(tan2009r1) tan2009r1 ## ----svmParamOptim, cache = TRUE, warning = FALSE, message = FALSE------- params <- svmOptimisation(tan2009r1, times = 10, xval = 5, verbose = FALSE) params ## ----svmRes, warning=FALSE, tidy=FALSE, eval=TRUE------------------------ tan2009r1 <- svmClassification(tan2009r1, params) tan2009r1 ## ----weigths, eval=FALSE------------------------------------------------- ## w <- table(fData(markerMSnSet(dunkley2006))$markers) ## wpar <- svmOptimisation(dunkley2006, class.weights = w) ## wres <- svmClassification(dunkley2006, wpar, class.weights = w) ## ----getmlfunction, echo=FALSE------------------------------------------- ## Add chi^2. tab <- data.frame('parameter optimisation' = grep("Optimisation", ls("package:pRoloc"), value = TRUE), 'classification' = grep("Classification", ls("package:pRoloc"), value = TRUE)) tab$algorithm <- c("nearest neighbour", "nearest neighbour transfer learning", "support vector machine", "naive bayes", "neural networks", "PerTurbo", "partial least square", "random forest", "support vector machine") tab$package <- c("class", "pRoloc", "kernlab", "e1071", "nnet", "pRoloc", "caret", "randomForest", "e1071") colnames(tab)[1] <- c("parameter optimisation") ## ----comptab, results='asis', echo=FALSE--------------------------------- xt <- xtable(tab, label = "tab:algo", caption = "Supervised ML algorithm available in \\Biocpkg{pRoloc}.") print(xt, include.rownames = FALSE, size = "small") ## ----sessioninfo, results='asis', echo=FALSE----------------------------- toLatex(sessionInfo())