library(tidytof)
library(dplyr)
Often, clustering single-cell data to identify communities of cells with shared characteristics is a major goal of high-dimensional cytometry data analysis.
To do this, {tidytof}
provides the tof_cluster()
verb. Several clustering methods are implemented in {tidytof}
, including the following:
Each of these methods are wrapped by tof_cluster()
.
tof_cluster()
To demonstrate, we can apply the PhenoGraph clustering algorithm to {tidytof}
’s built-in phenograph_data
. Note that phenograph_data
contains 3000 total cells (1000 each from 3 clusters identified in the original PhenoGraph publication). For demonstration purposes, we also metacluster our PhenoGraph clusters using k-means clustering.
data(phenograph_data)
set.seed(203L)
phenograph_clusters <-
phenograph_data |>
tof_preprocess() |>
tof_cluster(
cluster_cols = starts_with("cd"),
num_neighbors = 50L,
distance_function = "cosine",
method = "phenograph"
) |>
tof_metacluster(
cluster_col = .phenograph_cluster,
metacluster_cols = starts_with("cd"),
num_metaclusters = 3L,
method = "kmeans"
)
phenograph_clusters |>
dplyr::select(sample_name, .phenograph_cluster, .kmeans_metacluster) |>
head()
#> # A tibble: 6 × 3
#> sample_name .phenograph_cluster .kmeans_metacluster
#> <chr> <chr> <chr>
#> 1 H1_PhenoGraph_cluster1 5 2
#> 2 H1_PhenoGraph_cluster1 1 2
#> 3 H1_PhenoGraph_cluster1 5 2
#> 4 H1_PhenoGraph_cluster1 1 2
#> 5 H1_PhenoGraph_cluster1 1 2
#> 6 H1_PhenoGraph_cluster1 5 2
The outputs of both tof_cluster()
and tof_metacluster()
are a tof_tbl
identical to the input tibble, but now with the addition of an additional column (in this case, “.phenograph_cluster” and “.kmeans_metacluster”) that encodes the cluster id for each cell in the input tof_tbl
. Note that all output columns added to a tibble or tof_tbl
by {tidytof}
begin with a full-stop (”.”) to reduce the likelihood of collisions with existing column names.
Because the output of tof_cluster
is a tof_tbl
, we can use dplyr
’s count
method to assess the accuracy of our clustering procedure compared to the original clustering from the PhenoGraph paper.
phenograph_clusters |>
dplyr::count(phenograph_cluster, .kmeans_metacluster, sort = TRUE)
#> # A tibble: 4 × 3
#> phenograph_cluster .kmeans_metacluster n
#> <chr> <chr> <int>
#> 1 cluster2 1 1000
#> 2 cluster3 3 1000
#> 3 cluster1 2 995
#> 4 cluster1 3 5
Here, we can see that our clustering procedure groups most cells from the same PhenoGraph cluster with one another (with a small number of mistakes).
To change which clustering algorithm tof_cluster
uses, alter the method
flag.
# use the kmeans algorithm
phenograph_data |>
tof_preprocess() |>
tof_cluster(
cluster_cols = contains("cd"),
method = "kmeans"
)
# use the flowsom algorithm
phenograph_data |>
tof_preprocess() |>
tof_cluster(
cluster_cols = contains("cd"),
method = "flowsom"
)
To change the columns used to compute the clusters, change the cluster_cols
flag. And finally, if you want to return a one-column tibble
that only includes the cluster labels (as opposed to the cluster labels added as a new column to the input tof_tbl
), set augment
to FALSE
.
# will result in a tibble with only 1 column (the cluster labels)
phenograph_data |>
tof_preprocess() |>
tof_cluster(
cluster_cols = contains("cd"),
method = "kmeans",
augment = FALSE
) |>
head()
#> # A tibble: 6 × 1
#> .kmeans_cluster
#> <chr>
#> 1 9
#> 2 9
#> 3 2
#> 4 19
#> 5 12
#> 6 19
sessionInfo()
#> R version 4.5.0 RC (2025-04-04 r88126)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.2 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] HDCytoData_1.27.0 flowCore_2.20.0
#> [3] SummarizedExperiment_1.38.0 Biobase_2.68.0
#> [5] GenomicRanges_1.60.0 GenomeInfoDb_1.44.0
#> [7] IRanges_2.42.0 S4Vectors_0.46.0
#> [9] MatrixGenerics_1.20.0 matrixStats_1.5.0
#> [11] ExperimentHub_2.16.0 AnnotationHub_3.16.0
#> [13] BiocFileCache_2.16.0 dbplyr_2.5.0
#> [15] BiocGenerics_0.54.0 generics_0.1.3
#> [17] forcats_1.0.0 ggplot2_3.5.2
#> [19] dplyr_1.1.4 tidytof_1.2.0
#>
#> loaded via a namespace (and not attached):
#> [1] jsonlite_2.0.0 shape_1.4.6.1 magrittr_2.0.3
#> [4] farver_2.1.2 rmarkdown_2.29 vctrs_0.6.5
#> [7] memoise_2.0.1 sparsevctrs_0.3.3 htmltools_0.5.8.1
#> [10] S4Arrays_1.8.0 curl_6.2.2 SparseArray_1.8.0
#> [13] sass_0.4.10 parallelly_1.43.0 bslib_0.9.0
#> [16] lubridate_1.9.4 cachem_1.1.0 igraph_2.1.4
#> [19] mime_0.13 lifecycle_1.0.4 iterators_1.0.14
#> [22] pkgconfig_2.0.3 Matrix_1.7-3 R6_2.6.1
#> [25] fastmap_1.2.0 GenomeInfoDbData_1.2.14 future_1.40.0
#> [28] digest_0.6.37 colorspace_2.1-1 AnnotationDbi_1.70.0
#> [31] RSQLite_2.3.9 labeling_0.4.3 filelock_1.0.3
#> [34] cytolib_2.20.0 yardstick_1.3.2 timechange_0.3.0
#> [37] httr_1.4.7 polyclip_1.10-7 abind_1.4-8
#> [40] compiler_4.5.0 bit64_4.6.0-1 withr_3.0.2
#> [43] doParallel_1.0.17 viridis_0.6.5 DBI_1.2.3
#> [46] ggforce_0.4.2 MASS_7.3-65 lava_1.8.1
#> [49] rappdirs_0.3.3 DelayedArray_0.34.0 tools_4.5.0
#> [52] future.apply_1.11.3 nnet_7.3-20 glue_1.8.0
#> [55] grid_4.5.0 recipes_1.2.1 gtable_0.3.6
#> [58] tzdb_0.5.0 class_7.3-23 tidyr_1.3.1
#> [61] data.table_1.17.0 hms_1.1.3 utf8_1.2.4
#> [64] tidygraph_1.3.1 XVector_0.48.0 ggrepel_0.9.6
#> [67] BiocVersion_3.21.1 foreach_1.5.2 pillar_1.10.2
#> [70] stringr_1.5.1 RcppHNSW_0.6.0 splines_4.5.0
#> [73] tweenr_2.0.3 lattice_0.22-7 survival_3.8-3
#> [76] bit_4.6.0 RProtoBufLib_2.20.0 tidyselect_1.2.1
#> [79] Biostrings_2.76.0 knitr_1.50 gridExtra_2.3
#> [82] xfun_0.52 graphlayouts_1.2.2 hardhat_1.4.1
#> [85] timeDate_4041.110 stringi_1.8.7 UCSC.utils_1.4.0
#> [88] yaml_2.3.10 evaluate_1.0.3 codetools_0.2-20
#> [91] ggraph_2.2.1 tibble_3.2.1 BiocManager_1.30.25
#> [94] cli_3.6.4 rpart_4.1.24 munsell_0.5.1
#> [97] jquerylib_0.1.4 Rcpp_1.0.14 globals_0.16.3
#> [100] png_0.1-8 parallel_4.5.0 gower_1.0.2
#> [103] readr_2.1.5 blob_1.2.4 listenv_0.9.1
#> [106] glmnet_4.1-8 viridisLite_0.4.2 ipred_0.9-15
#> [109] ggridges_0.5.6 scales_1.3.0 prodlim_2024.06.25
#> [112] purrr_1.0.4 crayon_1.5.3 rlang_1.1.6
#> [115] KEGGREST_1.48.0