## ----style, echo = FALSE, results = 'asis'------------------------------------ BiocStyle::markdown() ## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # if (!requireNamespace("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # # BiocManager::install("PolySTest") ## ----warning=F,message=F------------------------------------------------------ library(PolySTest) library(SummarizedExperiment) # Load the data file "LiverAllProteins.csv" from the PolySTest package filename <- system.file("extdata", "LiverAllProteins.csv", package = "PolySTest") dat <- read.csv(filename, row.names=1, stringsAsFactors = FALSE) dat <- dat[1:200,] # Use a subset of the data for this example ## ----------------------------------------------------------------------------- # Normalization (example) dat <- t(t(dat) - colMedians(as.matrix(dat), na.rm = TRUE)) ## ----------------------------------------------------------------------------- sampleMetadata <- data.frame(Condition = rep(paste("Condition", 1:4), each=3), Replicate = rep(1:3, each=4)) fulldata <- SummarizedExperiment(assays = list(quant = dat), colData = sampleMetadata) rowData(fulldata) <- rownames(dat) metadata(fulldata) <- list(NumReps = 3, NumCond = 4) assay(fulldata, "quant") <- dat fulldata <- update_conditions_with_lcs(fulldata) ## ----------------------------------------------------------------------------- conditions <- unique(colData(fulldata)$Condition) allComps <- create_pairwise_comparisons(conditions, 1) ## ----------------------------------------------------------------------------- fulldata_unpaired <- PolySTest_unpaired(fulldata, allComps) ## ----fig.width=7, fig.height=4------------------------------------------------ # Define comparisons to visualize from available ones compNames <- metadata(fulldata_unpaired)$compNames print(compNames) comps <- compNames[1] # Plotting the results plotPvalueDistr(fulldata_unpaired, comps, c("limma", "Miss Test")) ## ----fig.width=7, fig.height=4------------------------------------------------ # Select proteins with FDR < 0.01 sigProts <- which(rowData(fulldata_unpaired)[, paste0("FDR_PolySTest_", comps[1])] < 0.01) # Volcano plot plotVolcano(fulldata_unpaired, compNames = comps, sel_prots = sigProts, testNames = c("PolySTest", "limma", "Miss Test")) ## ----fig.width=7, fig.height=4------------------------------------------------ plotUpset(fulldata_unpaired, qlim=0.01) ## ----fig.width=8, fig.height=6------------------------------------------------ plotExpression(fulldata_unpaired, sel_prots = sigProts) ## ----fig.width=7, fig.height=4------------------------------------------------ plotRegNumber(fulldata_unpaired) ## ----fig.width=6, fig.height=6------------------------------------------------ plotHeatmaply(fulldata_unpaired, sel_prots = sigProts, heatmap_scale = "row") ## ----------------------------------------------------------------------------- sessionInfo()