## ----style, echo = FALSE, results = 'asis'------------------------------------ BiocStyle::markdown() knitr::opts_chunk$set(fig.wide = TRUE, fig.retina = 3) ## ----arch, echo=FALSE, out.width="80%", eval=TRUE, fig.cap="Integration of rawDiag and rawrr into the Spectra ecosystem (by courtesy of Johannes Rainer)."---- knitr::include_graphics("arch.jpg") ## ----require------------------------------------------------------------------ suppressMessages( stopifnot(require(Spectra), require(MsBackendRawFileReader), require(tartare), require(BiocParallel)) ) ## ----installAssemblies, echo=TRUE--------------------------------------------- if (isFALSE(file.exists(rawrr:::.rawrrAssembly()))){ rawrr::installRawrrExe() } ## ----tartareEH4547, warning=FALSE, message=FALSE, eval=TRUE------------------- # fetch via ExperimentHub library(ExperimentHub) eh <- ExperimentHub::ExperimentHub() ## ----tartare------------------------------------------------------------------ query(eh, c('tartare')) ## ----EH3220, message=FALSE, warning=FALSE------------------------------------- EH3220 <- normalizePath(eh[["EH3220"]]) (rawfileEH3220 <- paste0(EH3220, ".raw")) if (!file.exists(rawfileEH3220)){ file.link(EH3220, rawfileEH3220) } EH3222 <- normalizePath(eh[["EH3222"]]) (rawfileEH3222 <- paste0(EH3222, ".raw")) if (!file.exists(rawfileEH3222)){ file.link(EH3222, rawfileEH3222) } EH4547 <- normalizePath(eh[["EH4547"]]) (rawfileEH4547 <- paste0(EH4547 , ".raw")) if (!file.exists(rawfileEH4547 )){ file.link(EH4547 , rawfileEH4547 ) } ## ----backendInitializeMsBackendRawFileReader, message=FALSE------------------- beRaw <- Spectra::backendInitialize( MsBackendRawFileReader::MsBackendRawFileReader(), files = c(rawfileEH3220, rawfileEH3222, rawfileEH4547)) ## ----show--------------------------------------------------------------------- beRaw ## ----spectraVariables--------------------------------------------------------- beRaw |> Spectra::spectraVariables() ## ----rawrrFigure2, fig.cap = "Peptide spectrum match. The vertical grey lines indicate the *in-silico* computed y-ions of the peptide precusor LGGNEQVTR++ as calculated by the [protViz]( https://CRAN.R-project.org/package=protViz) package."---- (S <- (beRaw |> filterScan("FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000-1015.0000]") )[437]) |> plotSpectra() # supposed to be scanIndex 9594 S # add yIonSeries to the plot (yIonSeries <- protViz::fragmentIon("LGGNEQVTR")[[1]]$y[1:8]) names(yIonSeries) <- paste0("y", seq(1, length(yIonSeries))) abline(v = yIonSeries, col='#DDDDDD88', lwd=5) axis(3, yIonSeries, names(yIonSeries)) ## ----defineFilterIon---------------------------------------------------------- setGeneric("filterIons", function(object, ...) standardGeneric("filterIons")) setMethod("filterIons", "MsBackend", function(object, mZ=numeric(), tol=numeric(), ...) { keep <- lapply(peaksData(object, BPPARAM = bpparam()), FUN=function(x){ NN <- protViz::findNN(mZ, x[, 1]) hit <- (error <- mZ - x[NN, 1]) < tol & x[NN, 2] >= quantile(x[, 2], .9) if (sum(hit) == length(mZ)) TRUE else FALSE }) object[unlist(keep)] }) ## ----applyFilterIons---------------------------------------------------------- start_time <- Sys.time() X <- beRaw |> MsBackendRawFileReader::filterScan("FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000-1015.0000]") |> filterIons(yIonSeries, tol = 0.005) |> Spectra::Spectra() |> Spectra::peaksData() end_time <- Sys.time() ## ----runTime------------------------------------------------------------------ end_time - start_time ## ----definePlotLGGNEQVTR------------------------------------------------------ ## A helper plot function to visualize a peptide spectrum match for ## the LGGNEQVTR peptide. .plot.LGGNEQVTR <- function(x){ yIonSeries <- protViz::fragmentIon("LGGNEQVTR")[[1]]$y[1:8] names(yIonSeries) <- paste0("y", seq(1, length(yIonSeries))) plot(x, type = 'h', xlim = range(yIonSeries)) abline(v = yIonSeries, col = '#DDDDDD88', lwd=5) axis(3, yIonSeries, names(yIonSeries)) # find nearest mZ value idx <- protViz::findNN(yIonSeries, x[,1]) data.frame( ion = names(yIonSeries), mZ.yIon = yIonSeries, mZ = x[idx, 1], intensity = x[idx, 2] ) } ## ----filterIons2, fig.height=8, fig.cap = "Visualizing of the LGGNEQVTR spectrum matches.", echo=FALSE---- op <- par(mfrow=c(4, 1), mar=c(4, 4, 4, 1)) XC <- X |> lapply(FUN = .plot.LGGNEQVTR) |> Reduce(f = rbind) ## ----sanityCheck, error=FALSE------------------------------------------------- stats::aggregate(mZ ~ ion, data = XC, FUN = base::mean) stats::aggregate(intensity ~ ion, data = XC, FUN = base::max) ## ----combinePeaks, fig.cap = "Combined LGGNEQVTR peptide spectrum match plot.", error = TRUE---- X |> Spectra::combinePeaks(ppm=10, intensityFun=base::max) |> .plot.LGGNEQVTR() ## ----MsBackendMgf------------------------------------------------------------- if (require(MsBackendMgf)){ ## Map Spectra variables to Mascot Server compatible vocabulary. map <- c(custom = "TITLE", msLevel = "CHARGE", scanIndex = "SCANS", precursorMz = "PEPMASS", rtime = "RTINSECONDS") ## Compose custom TITLE beRaw$custom <- paste0("File: ", beRaw$dataOrigin, " ; SpectrumID: ", S$scanIndex) (mgf <- tempfile(fileext = '.mgf')) (beRaw |> filterScan("FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000-1015.0000]") )[437] |> Spectra::Spectra() |> Spectra::selectSpectraVariables(c("rtime", "precursorMz", "precursorCharge", "msLevel", "scanIndex", "custom")) |> MsBackendMgf::export(backend = MsBackendMgf::MsBackendMgf(), file = mgf, map = map) readLines(mgf) |> head(12) readLines(mgf) |> tail() } ## ----allMS2------------------------------------------------------------------- S <- Spectra::backendInitialize( MsBackendRawFileReader::MsBackendRawFileReader(), files = c(rawfileEH4547)) |> Spectra() S ## ----writeMGF, eval=FALSE----------------------------------------------------- # S |> # MsBackendMgf::export(backend = MsBackendMgf::MsBackendMgf(), # file = mgf, # map = map) ## ----defineScanTypePattern---------------------------------------------------- ## Define scanType patterns scanTypePattern <- list( EThcD.lowres = "ITMS.+sa Full ms2.+@etd.+@hcd.+", ETciD.lowres = "ITMS.+sa Full ms2.+@etd.+@cid.+", CID.lowres = "ITMS[^@]+@cid[^@]+$", HCD.lowres = "ITMS[^@]+@hcd[^@]+$", EThcD.highres = "FTMS.+sa Full ms2.+@etd.+@hcd.+", HCD.highres = "FTMS[^@]+@hcd[^@]+$" ) ## ----custom0------------------------------------------------------------------ beRaw <- Spectra::backendInitialize( MsBackendRawFileReader::MsBackendRawFileReader(), files = c(rawrr::sampleFilePath())) ## ----custom1------------------------------------------------------------------ beRaw <- Spectra::backendInitialize( MsBackendRawFileReader::MsBackendRawFileReader(), files = rawrr::sampleFilePath()) beRaw$custom <- paste0("File: ", gsub("/srv/www/htdocs/Data2San/", "", beRaw$dataOrigin), " ; SpectrumID: ", beRaw$scanIndex) ## ----generate_mgf------------------------------------------------------------- .generate_mgf <- function(ext, pattern, dir=tempdir(), ...){ mgf <- file.path(dir, paste0(sub("\\.raw", "", unique(basename(beRaw$dataOrigin))), ".", ext, ".mgf")) idx <- beRaw$scanType |> grepl(patter=pattern) if (sum(idx) == 0) return (NULL) message(paste0("Extracting ", sum(idx), " ", pattern, " scans\n\t to file ", mgf, " ...")) beRaw[which(idx)] |> Spectra::Spectra() |> Spectra::selectSpectraVariables(c("rtime", "precursorMz", "precursorCharge", "msLevel", "scanIndex", "custom")) |> MsBackendMgf::export(backend = MsBackendMgf::MsBackendMgf(), file = mgf, map = map) mgf } #mapply(ext = names(scanTypePattern), # scanTypePattern, # FUN = .generate_mgf) |> # lapply(FUN = function(f){if (file.exists(f)) {readLines(f) |> head()}}) ## ----defineTopN--------------------------------------------------------------- ## Define a function that takes a matrix as input and derives ## the top n most intense peaks within a mass window. ## Of note, here, we require centroided data. (no profile mode!) MsBackendRawFileReader:::.top_n ## ----applyProcessing---------------------------------------------------------- S_2 <- Spectra::addProcessing(S, MsBackendRawFileReader:::.top_n, n = 1) ## ----plotSpectraMirror9594, fig.retina=3, fig.cap = "Spectra mirror plot of the filtered (bottom) and unfiltered scan 9594.", error=TRUE---- Spectra::plotSpectraMirror(S[9594], S_2[9594], ppm = 50) ## ----compare9594mZValues------------------------------------------------------ S_2[9594] |> mz() |> unlist() yIonSeries ## ----readBenchmarkData, fig.cap="I/O Benchmark. The XY plot graphs how many spectra the backend can read in one second versus the chunk size of the rawrr::readSpectrum method for different compute architectures."---- ioBm <- file.path(system.file(package = 'MsBackendRawFileReader'), 'extdata', 'specs.csv') |> read.csv2(header=TRUE) # perform and include a local IO benchmark ioBmLocal <- ioBenchmark(1000, c(32, 64, 128, 256), rawfile = rawfileEH4547) lattice::xyplot((1 / as.numeric(time)) * workers ~ size | factor(n) , group = host, data = rbind(ioBm, ioBmLocal), horizontal = FALSE, scales=list(y = list(log = 10)), auto.key = TRUE, layout = c(3, 1), ylab = 'spectra read in one second', xlab = 'number of spectra / file') ## ----mzXML-------------------------------------------------------------------- mzXMLEH3219 <- normalizePath(eh[["EH3219"]]) mzXMLEH3221 <- normalizePath(eh[["EH3221"]]) ## ----backendInitialize, message=FALSE, fig.cap='Aggregated intensities mzXML versus raw of the 1st 100 spectra.', message=FALSE, warning=FALSE, fig.width=5, fig.height=5---- if (require(mzR)){ beMzXML <- Spectra::backendInitialize( Spectra::MsBackendMzR(), files = c(mzXMLEH3219)) beRaw <- Spectra::backendInitialize( MsBackendRawFileReader::MsBackendRawFileReader(), files = c(rawfileEH3220)) intensity.xml <- sapply(intensity(beMzXML[1:100]), sum) intensity.raw <- sapply(intensity(beRaw[1:100]), sum) plot(intensity.xml ~ intensity.raw, log = 'xy', asp = 1, pch = 16, col = rgb(0.5, 0.5, 0.5, alpha=0.5), cex=2) abline(lm(intensity.xml ~ intensity.raw), col='red') } ## ----------------------------------------------------------------------------- if (require(mzR)){ table(scanIndex(beRaw) %in% scanIndex(beMzXML)) } ## ----sessionInfo-------------------------------------------------------------- sessionInfo()