Package 'DELocal'

February 28, 2025

Title Identifies differentially expressed genes with respect to other local genes

Version 1.7.0

Description The goal of DELocal is to identify DE genes compared to their neighboring genes from the same chromosomal location. It has been shown that genes of related functions are generally very far from each other in the chromosome. DELocal utilzes this information to identify DE genes comparing with their neighbouring genes.

License MIT + file LICENSE

URL https://github.com/dasroy/DELocal

BugReports https://github.com/dasroy/DELocal/issues

Encoding UTF-8

LazyData false

RoxygenNote 7.2.3

biocViews GeneExpression, DifferentialExpression, RNASeq, Transcriptomics

Imports DESeq2, dplyr, reshape2, limma, SummarizedExperiment, ggplot2, matrixStats, stats

Suggests biomaRt, knitr, rmarkdown, stringr, BiocStyle

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/DELocal

git_branch devel

git_last_commit b84dfd4

git last commit date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2025-02-28

Author Rishi Das Roy [aut, cre] (ORCID:

<https://orcid.org/0000-0002-3276-7279>)

Maintainer Rishi Das Roy <rishi.dasroy@gmail.com>

2 DELocal

Contents

	DELocal	2
	olotNeighbourhood	3
Index	•	5

DELocal

Finds differentially expressed genes by comparing neighboring genes

Description

Finds differentially expressed genes by comparing neighboring genes

Usage

```
DELocal(
   pSmrExpt,
   nearest_neighbours,
   pDesign,
   pValue_cut = 0.05,
   pLogFold_cut = 0
)
```

Arguments

pSmrExpt SummarizedExperiment object

nearest_neighbours

How many nearest neighbours within 1 Mb window to evaluate?

pDesign design formula

pValue_cut cut off value for adjusted p-value

pLogFold_cut cut off value for relative log fold change compared to neighbouring genes

Value

A data.frame with top significant genes with the following columns:

relative.logFC: relative logFC compared to neighbouring genes

P.Value: raw p-value

adj.P.Value: adjusted p-value

B: log-odds that the gene is differentially expressed

plotNeighbourhood 3

Examples

```
count_matrix <- as.matrix(read.table(file = system.file("extdata",</pre>
                                                                 "tooth_RNASeq_counts.txt",
                                                                     package = "DELocal")))
colData <- data.frame(condition=gsub("\\..*",x=colnames(count_matrix),</pre>
                                       replacement = ""))
gene_location <- read.table(file = system.file("extdata", "gene_location.txt",</pre>
                                      package = "DELocal"))
smrExpt <- SummarizedExperiment::SummarizedExperiment(</pre>
                                          assays=list(counts=count_matrix),
                                          rowData = gene_location,
                                          colData=colData)
contrast= c("condition","ME13","ME14")
require(dplyr)
x_genes <- SummarizedExperiment::rowData(smrExpt) %>%
      as.data.frame() %>%
      filter(chromosome_name=="X") %>% rownames()
DELocal_result <- DELocal(pSmrExpt = smrExpt[x_genes,],</pre>
                          nearest_neighbours = 5, pDesign = ~ condition,
                          pValue_cut = 0.05, pLogFold_cut = 0)
```

plotNeighbourhood

Returns median expression from different conditions of genes from a neighbourhood of a gene of interest

Description

Returns median expression from different conditions of genes from a neighbourhood of a gene of interest

Usage

```
plotNeighbourhood(
  pSmrExpt,
  pNearest_neighbours = 5,
  pDesign = ~condition,
  colorFactor = "condition",
  pGene_id
)
```

Arguments

pSmrExpt SummarizedExperiment object
pNearest_neighbours
How many nearest neighbours within 1 Mb window to plot
pDesign design formula
colorFactor The coloring factor
pGene_id The gene of interest

4 plotNeighbourhood

Value

a list which contains both the data from the neighbourhood and a ggplot object

Examples

```
count_matrix <- as.matrix(read.table(file = system.file("extdata",</pre>
                                                                 "tooth_RNASeq_counts.txt",
                                                                    package = "DELocal")))
\verb|colData| <- data.frame(condition=gsub("\\...*",x=colnames(count_matrix),|
                                      replacement = ""))
gene_location <- read.table(file = system.file("extdata", "gene_location.txt",</pre>
                                     package = "DELocal"))
smrExpt <- SummarizedExperiment::SummarizedExperiment(assays=list(counts=count_matrix),</pre>
                                             rowData = gene_location,
                                             colData = colData)
contrast= c("condition","ME13","ME14")
require(dplyr)
x_genes <- SummarizedExperiment::rowData(smrExpt) %>%
      as.data.frame() %>%
      filter(chromosome_name=="X") %>% rownames()
DELocal::plotNeighbourhood(pSmrExpt = smrExpt, pGene_id = "ENSMUSG00000059401")
```

Index

DELocal, 2

 ${\tt plotNeighbourhood}, {\tt 3}$