--- title: "Other SeSAMe Features" date: "`r BiocStyle::doc_date()`" package: sesame output: BiocStyle::html_document fig_width: 8 fig_height: 6 vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{5. Other Features} %\VignetteEncoding{UTF-8} --- # Genomic Privacy ## Purpose Probe masking is important to prevent privacy data leakage. The goal of data sanitization is to modifiy IDAT files in place, so they can be released to public domain without privacy leak. This will be achieved by deIdentification. The following function requires the R package seSAMe. ```{r message=FALSE, warning=FALSE, include=FALSE} library(sesame) ``` Let's take DNA methylation data from the HM450 platform for example. ```{r, eval=TRUE} dest_dir = tempdir() res_grn = sesameDataDownload("3999492009_R01C01_Grn.idat", dest_dir=dest_dir) res_red = sesameDataDownload("3999492009_R01C01_Red.idat", dest_dir=dest_dir) ``` ## De-identify by Masking This first method of deIdentification masks SNP probe intensity mean by zero. As a consequence, the allele frequency will be 0.5. ```{r, eval=TRUE} deIdentify(res_grn$dest_file, sprintf("%s/deidentified_Grn.idat", dest_dir)) deIdentify(res_red$dest_file, sprintf("%s/deidentified_Red.idat", dest_dir)) betas1 = getBetas(readIDATpair(sprintf("%s/3999492009_R01C01", dest_dir))) betas2 = getBetas(readIDATpair(sprintf("%s/deidentified", dest_dir))) head(betas1[grep('rs',names(betas1))]) head(betas2[grep('rs',names(betas2))]) ``` Note that before deIdentify, the rs values will all be different. After deIdentify, the rs values will all be masked at an intensity of 0.5. ## De-identify by Scrambling This second method of deIdentification will scramble the intensities using a secret key to help formalize a random number. Therefore, randomize needs to be set to TRUE. ```{r, eval=TRUE} my_secret <- 13412084 set.seed(my_secret) deIdentify(res_grn$dest_file, sprintf("%s/deidentified_Grn.idat", dest_dir), randomize=TRUE) my_secret <- 13412084 set.seed(my_secret) deIdentify(res_red$dest_file, sprintf("%s/deidentified_Red.idat", dest_dir), randomize=TRUE) betas1 = getBetas(readIDATpair(sprintf("%s/3999492009_R01C01", dest_dir))) betas2 = getBetas(readIDATpair(sprintf("%s/deidentified", dest_dir))) head(betas1[grep('rs',names(betas1))]) head(betas2[grep('rs',names(betas2))]) ``` Note that the rs values are scrambled after deIdentify. ## Re-identify To restore order of the deIdentified intensities, one can re-identify IDATs. The reIdentify function can thus restore the scrambled SNP intensities. ```{r, eval=TRUE} my_secret <- 13412084 set.seed(my_secret) reIdentify(sprintf("%s/deidentified_Grn.idat", dest_dir), sprintf("%s/reidentified_Grn.idat", dest_dir)) my_secret <- 13412084 set.seed(my_secret) reIdentify(sprintf("%s/deidentified_Red.idat", dest_dir), sprintf("%s/reidentified_Red.idat", dest_dir)) betas1 = getBetas(readIDATpair(sprintf("%s/3999492009_R01C01", dest_dir))) betas2 = getBetas(readIDATpair(sprintf("%s/reidentified", dest_dir))) head(betas1[grep('rs',names(betas1))]) head(betas2[grep('rs',names(betas2))]) ``` Note that reIdentify restored the values. Subsequently, they are the same as betas1. # Extract Genotypes SeSAMe can output explicit and Infinium-I-derived SNP to VCF. This information can be used to identify sample swaps. ```{r} sset <- sesameDataGet('EPIC.1.LNCaP')$sset annoS = sesameDataGetAnno("EPIC/EPIC.hg19.snp_overlap_b151.rds") annoI = sesameDataGetAnno("EPIC/EPIC.hg19.typeI_overlap_b151.rds") head(formatVCF(sset, annoS=annoS, annoI=annoI)) # output to console ``` One can output to actual VCF file with a header by `formatVCF(sset, vcf=path_to_vcf)`. # The FileSet ## Preprocessing IDATs to FileSets When a large number of samples are being analyzed, it is desirable to have random access to specific CpG methylation without loading all the data. SeSAMe provides such interface through the `fileSet` object which is in essence an indexed file-based numeric matrix. The one function to generate a `fileSet` is through the `openSesameToFile` function. In this case, there is no concrete output from the function. The consequence is the generation of a file at the given path. One can operate on the `fileSet` by referencing the path to the file. ```{r message = FALSE} library(sesame) options(rmarkdown.html_vignette.check_title = FALSE) ``` The following `openSesameToFile` call does three things - generates a file called `mybetas`. - generates an index file called `mybetas_idx.rds` - returns a `fileSet` object which serves as an interface to the two files. ```{r} fset <- openSesameToFile('mybetas', system.file('extdata',package='sesameData')) ``` ## Introduction to fileSet When printed to console, the number of samples and the number of probes are shown. ```{r} fset ``` One can obtain the samples and probes information with the `$` operator. ```{r} head(fset$samples) # sample IDs head(fset$probes) # probe IDs ``` ## Query fileSet One can query the specific CpG by probe name(s) and sample name(s). Note that every query to fset is a disk read. Therefore it can be slower than in-memory processing. Here we only retrieve the beta values for the two probes _cg00006414_ and _cg00007981_ in the sample *4207113116_B*. ```{r} sliceFileSet(fset, '4207113116_B', c('cg00006414','cg00007981')) ``` ## Read Existing fileSet In the previous example, we preprocessed IDATs directly to `fileSet`. We can also read a pre-existing `fileSet` using the file path using `readFileSet` function. ```{r} fset <- readFileSet('mybetas') sliceFileSet(fset, '4207113116_A', 'cg00000292') ``` ## Write fileSet by Allocation and Filling `fileSet` size is always fixed. One cannot dynamically expand or shrink a fileSet. We can write a fileSet by filling the space one sample by one sample. This is achieved by first allocating the space given the number of samples and the probe IDs (optional if platform is one if HM27, HM450 or EPIC). ```{r} fset2 <- initFileSet('mybetas2', 'HM450', c('sample1', 'sample2')) ``` Then one can fill in the beta values by `mapFileSet`. Here I am illustrating using a randomly generated beta values. ```{r} hypothetical_betas <- setNames(runif(fset2$n), fset2$probes) mapFileSet(fset2, 'sample2', hypothetical_betas) ``` The mapped value should be equal to the generated beta value. Let's spot-check. ```{r} abs(sliceFileSet(fset2,'sample2','cg00000108') - hypothetical_betas['cg00000108']) < 1e-7 ```