--- title: "MS2 chromatograms based alignment of targeted mass-spectrometry runs" author: "Shubham Gupta and Hannes Röst" package: DIAlignR date: "`r Sys.Date()`" output: BiocStyle::html_document: toc: true toc_float: true bibliography: DIAlignR.bib vignette: > %\VignetteIndexEntry{MS2 chromatograms based alignment of targeted mass-spectrometry runs} %\VignetteEngine{knitr::rmarkdown} %\VignetteKeywords{Retention time alignment, DIA, Targeted MS, mass spectrometry, proteomics, metabolomics} %\VignettePackage{DIAlignR} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` In this document we are presenting a workflow of retention-time alignment across multiple Targeted-MS (e.g. DIA, SWATH-MS, PRM, SRM) runs using DIAlignR. This tool requires MS2 chromatograms and provides a hybrid approach of global and local alignment to establish correspondence between peaks. ## Install DIAlignR ```{r installDIAlignR, eval=FALSE} if(!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("DIAlignR") ``` ```{r loadDIAlignR} library(DIAlignR) ``` ## Prepare input files for alignment Mass-spectrometry files mostly contains spectra. Targeted proteomics workflow identifyies analytes from their chromatographic elution profile. DIAlignR extends the same concept for retention-time (RT) alignment and, therefore, relies on MS2 chromatograms. DIAlignR expects raw chromatogram file (.chrom.mzML) and FDR-scored features (.osw) file. Example files are available with this package and can be located with this command: ```{r getDataPath} dataPath <- system.file("extdata", package = "DIAlignR") ``` | (Optional) To obtain files for alignment, following three steps are needed: * Step 1 Convert spectra files from vendor-specific format to standard mzMl format using [ProteoWizard-MSConvert](http://proteowizard.sourceforge.net/tools.shtml). * Step 2 Extract features and raw extracted-ion chromatograms(XICs) for library analytes. A detailed tutorial using [OpenSWATH](http://openswath.org/en/latest/docs/openswath.html) is available for this steps. In short, following `bash` command can be used: ```{bash, eval=FALSE} OpenSwathWorkflow -in Filename.mzML.gz -tr library.pqp -tr_irt iRTassays.TraML -out_osw Filename.osw -out_chrom Filename.chrom.mzML ``` | Output files **Filename.osw** and **Filename.chrom.mzML** are required to next steps. Some chromatograms are stored in compressed form and currently inaccesible by `mzR`. In such cases `mzR` would throw an error indicating `Invalid cvParam accession "1002746"`. To avoid this issue, uncompress chromatograms using OpenMS. ```{bash, eval=FALSE} FileConverter -in Filename.chrom.mzML -in_type 'mzML' -out Filename.chrom.mzML ``` * Step 3: Score features and calculate their q-values. A machine-learning based workflow is available with [PyProphet](http://openswath.org/en/latest/docs/pyprophet.html). For multiplt-runs experiment-wide FDR is recommended. An example of running pyprophet on OpenSWATH results is given below: ```{bash, eval=FALSE} pyprophet merge --template=library.pqp --out=merged.osw *.osw pyprophet score --in=merged.osw --classifier=XGBoost --level=ms2 --xeval_num_iter=3 \ --ss_initial_fdr=0.05 --ss_iteration_fdr=0.01 pyprophet peptide --in=merged.osw --context=experiment-wide ``` | Congrats! Now we have raw chromatogram files and associated scored features in merged.osw files. Move all .chrom.mzML files in `xics` directory and merged.osw file in `osw` directory. The parent folder is given as `dataPath` to DIAlignR functions. ## Performing alignment on DIA runs `alignTargetedRuns` function aligns Proteomics or Metabolomics DIA runs. It expects two directories "osw" and "xics" at `dataPath`. It outputs an intensity table where rows specify each analyte and columns specify runs. Use parameter `saveFiles = TRUE` to have aligned retetion time and intensities saved in the current directory. ```{r, results=FALSE, message=FALSE, warning=FALSE} runs <- c("hroest_K120809_Strep0%PlasmaBiolRepl2_R04_SW_filt", "hroest_K120809_Strep10%PlasmaBiolRepl2_R04_SW_filt") params <- paramsDIAlignR() params[["context"]] <- "experiment-wide" # For specific runs provide their names. alignTargetedRuns(dataPath = dataPath, outFile = "test.csv", runs = runs, oswMerged = TRUE, params = params) # For all the analytes in all runs, keep them as NULL. alignTargetedRuns(dataPath = dataPath, outFile = "test.csv", runs = NULL, oswMerged = TRUE, params = params) ``` ## Investigating alignment of analytes For getting alignment object which has aligned indices of XICs `getAlignObjs` function can be used. Like previous function, it expects two directories "osw" and "xics" at `dataPath`. It performs alignment for exactly two runs. In case of `refRun` is not provided, m-score from osw files is used to select reference run. ```{r, message=FALSE} runs <- c("hroest_K120809_Strep0%PlasmaBiolRepl2_R04_SW_filt", "hroest_K120809_Strep10%PlasmaBiolRepl2_R04_SW_filt") AlignObjLight <- getAlignObjs(analytes = 4618L, runs = runs, dataPath = dataPath, objType = "light", params = params) # First element contains names of runs, spectra files, chromatogram files and feature files. AlignObjLight[[1]][, c("runName", "spectraFile")] obj <- AlignObjLight[[2]][["4618"]][[1]][["AlignObj"]] slotNames(obj) names(as.list(obj)) AlignObjMedium <- getAlignObjs(analytes = 4618L, runs = runs, dataPath = dataPath, objType = "medium", params = params) obj <- AlignObjMedium[[2]][["4618"]][[1]][["AlignObj"]] slotNames(obj) ``` Alignment object has slots * indexA_aligned aligned indices of reference chromatogram. * indexB_aligned aligned indices of experiment chromatogram * score cumulative score of the alignment till an index. * s similarity score matrix. * path path of the alignment through similarity score matrix. ## Visualizing the aligned chromatograms We can visualize aligned chromatograms using `plotAlignedAnalytes`. The top figure is experiment unaligned-XICs, middle one is reference XICs, last figure is experiment run aligned to reference. ```{r, fig.width=6, fig.align='center', fig.height=6, message=FALSE} runs <- c("hroest_K120809_Strep0%PlasmaBiolRepl2_R04_SW_filt", "hroest_K120809_Strep10%PlasmaBiolRepl2_R04_SW_filt") AlignObj <- getAlignObjs(analytes = 4618L, runs = runs, dataPath = dataPath, params = params) plotAlignedAnalytes(AlignObj, annotatePeak = TRUE) ``` ## Visualizing the alignment path We can also visualize the alignment path using `plotAlignemntPath` function. ```{r, fig.width=5, fig.align='center', fig.height=5, message=FALSE} library(lattice) runs <- c("hroest_K120809_Strep0%PlasmaBiolRepl2_R04_SW_filt", "hroest_K120809_Strep10%PlasmaBiolRepl2_R04_SW_filt") AlignObjOutput <- getAlignObjs(analytes = 4618L, runs = runs, params = params, dataPath = dataPath, objType = "medium") plotAlignmentPath(AlignObjOutput) ``` ## Citation Gupta S, Ahadi S, Zhou W, Röst H. "DIAlignR Provides Precise Retention Time Alignment Across Distant Runs in DIA and Targeted Proteomics." Mol Cell Proteomics. 2019 Apr;18(4):806-817. doi: https://doi.org/10.1074/mcp.TIR118.001132 ## Session Info ```{r} sessionInfo() ```