PANTHER.db 1.0.10
PANTHER.db
The PANTHER.db package provides a select
interface to the compiled PANTHER ontology residing within a SQLite database.
PANTHER.db
can be installed from Bioconductor using
if (!requireNamespace("BiocManager")) install.packages("BiocManager")
BiocManager::install("PANTHER.db")
The size of the underlying SQLite database is currently about 500MB and has to be pre downloaded using AnnotationHub as follows
if (!requireNamespace("AnnotationHub")) BiocManager::install("AnnotationHub")
library(AnnotationHub)
ah <- AnnotationHub()
query(ah, "PANTHER.db")[[1]]
Finally PANTHER.db
can be loaded with
library(PANTHER.db)
If you already know about the select interface, you can immediately learn about the various methods for this object by just looking at the help page.
help("PANTHER.db")
When you load the PANTHER.db
package, it creates a PANTHER.db
object. If you look at the object you will see
some helpful information about it.
PANTHER.db
## PANTHER.db object:
## | ORGANISMS: AMBTC|ANOCA|ANOPHELES|AQUAE|ARABIDOPSIS|ASHGO|ASPFU|BACCR|BACSU|BACTN|BATDJ|BOVINE|BRADI|BRADU|BRAFL|BRARP|CAEBR|CANAL|CANINE|CHICKEN|CHIMP|CHLAA|CHLRE|CHLTR|CIOIN|CITSI|CLOBH|COELICOLOR|COXBU|CRYNJ|CUCSA|DAPPU|DEIRA|DICDI|DICPU|DICTD|ECOLI|EMENI|ENTHI|ERYGU|FELCA|FLY|FUSNN|GEOSL|GIAIC|GLOVI|GORGO|GOSHI|HAEIN|HALSA|HELAN|HELPY|HELRO|HORSE|HORVV|HUMAN|IXOSC|KORCO|LEIMA|LEPIN|LEPOC|LISMO|MAIZE|MALARIA|MEDTR|METAC|METJA|MONBE|MONDO|MOUSE|MUSAM|MYCGE|MYCTU|NEIMB|NEMVE|NEUCR|NITMS|ORNAN|ORYLA|ORYSJ|OSTTA|PARTE|PHANO|PHODC|PHYPA|PHYRM|PIG|POPTR|PRIPA|PRUPE|PSEAE|PUCGT|PYRAE|RAT|RHESUS|RHOBA|RICCO|SALTY|SCHPO|SCLS1|SETIT|SHEON|SOLLC|SORBI|SOYBN|STAA8|STRPU|STRR6|SULSO|SYNY3|THAPS|THECC|THEKO|THEMA|THEYD|TOBAC|TRIAD|TRICA|TRIVA|TRYB2|USTMA|VIBCH|VITVI|WHEAT|WORM|XANCP|XENOPUS|YARLI|YEAST|YERPE|ZEBRAFISH|ZOSMR
## | PANTHERVERSION: 14.1
## | PANTHERSOURCEURL: ftp.pantherdb.org
## | PANTHERSOURCEDATE: 2019-Oct14
## | package: AnnotationDbi
## | Db type: PANTHER.db
## | DBSCHEMA: PANTHER_DB
## | DBSCHEMAVERSION: 2.1
## | UNIPROT to ENTREZ mapping: 2019-Oct14
By default, you can see that the PANTHER.db
object is set to
retrieve records from the various organisms supported by http://pantherdb.org.
Methods are provided to restrict all queries to a specific organism.
In order to change it, you first need to look up the appropriate organism
identifier for the organism that you are interested in.
The PANTHER gene ontology is based on the Uniprot reference proteome set.
In order to display the choices, we have provided the helper function
availablePthOrganisms
which will list all the supported
organisms along with their Uniprot organism name and taxonomy ids:
availablePthOrganisms(PANTHER.db)[1:5,]
## AnnotationDbi Species PANTHER Species Genome Source Genome Date
## 1 HUMAN HUMAN HGNC 2018-04
## 2 MOUSE MOUSE MGI 2018-04
## 3 RAT RAT RGD 2018-04
## 4 CHICKEN CHICK Ensembl 2018-04
## 5 ZEBRAFISH DANRE ZFIN 2018-04
## UNIPROT Species ID UNIPROT Species Name UNIPROT Taxon ID
## 1 HUMAN Homo sapiens 9606
## 2 MOUSE Mus musculus 10090
## 3 RAT Rattus norvegicus 10116
## 4 CHICK Gallus gallus 9031
## 5 DANRE Danio rerio 7955
Once you have learned the PANTHER organism name for the organism of interest, you
can then change the organism for the PANTHER.db
object:
pthOrganisms(PANTHER.db) <- "HUMAN"
PANTHER.db
## PANTHER.db object:
## | ORGANISMS: HUMAN
## | PANTHERVERSION: 14.1
## | PANTHERSOURCEURL: ftp.pantherdb.org
## | PANTHERSOURCEDATE: 2019-Oct14
## | package: AnnotationDbi
## | Db type: PANTHER.db
## | DBSCHEMA: PANTHER_DB
## | DBSCHEMAVERSION: 2.1
## | UNIPROT to ENTREZ mapping: 2019-Oct14
resetPthOrganisms(PANTHER.db)
PANTHER.db
## PANTHER.db object:
## | ORGANISMS: AMBTC|ANOCA|ANOPHELES|AQUAE|ARABIDOPSIS|ASHGO|ASPFU|BACCR|BACSU|BACTN|BATDJ|BOVINE|BRADI|BRADU|BRAFL|BRARP|CAEBR|CANAL|CANINE|CHICKEN|CHIMP|CHLAA|CHLRE|CHLTR|CIOIN|CITSI|CLOBH|COELICOLOR|COXBU|CRYNJ|CUCSA|DAPPU|DEIRA|DICDI|DICPU|DICTD|ECOLI|EMENI|ENTHI|ERYGU|FELCA|FLY|FUSNN|GEOSL|GIAIC|GLOVI|GORGO|GOSHI|HAEIN|HALSA|HELAN|HELPY|HELRO|HORSE|HORVV|HUMAN|IXOSC|KORCO|LEIMA|LEPIN|LEPOC|LISMO|MAIZE|MALARIA|MEDTR|METAC|METJA|MONBE|MONDO|MOUSE|MUSAM|MYCGE|MYCTU|NEIMB|NEMVE|NEUCR|NITMS|ORNAN|ORYLA|ORYSJ|OSTTA|PARTE|PHANO|PHODC|PHYPA|PHYRM|PIG|POPTR|PRIPA|PRUPE|PSEAE|PUCGT|PYRAE|RAT|RHESUS|RHOBA|RICCO|SALTY|SCHPO|SCLS1|SETIT|SHEON|SOLLC|SORBI|SOYBN|STAA8|STRPU|STRR6|SULSO|SYNY3|THAPS|THECC|THEKO|THEMA|THEYD|TOBAC|TRIAD|TRICA|TRIVA|TRYB2|USTMA|VIBCH|VITVI|WHEAT|WORM|XANCP|XENOPUS|YARLI|YEAST|YERPE|ZEBRAFISH|ZOSMR
## | PANTHERVERSION: 14.1
## | PANTHERSOURCEURL: ftp.pantherdb.org
## | PANTHERSOURCEDATE: 2019-Oct14
## | package: AnnotationDbi
## | Db type: PANTHER.db
## | DBSCHEMA: PANTHER_DB
## | DBSCHEMAVERSION: 2.1
## | UNIPROT to ENTREZ mapping: 2019-Oct14
As you can see, organisms are now restricted to Homo sapiens. To display all data which can be returned from a select query, the columns method can be used:
columns(PANTHER.db)
## [1] "CLASS_ID" "CLASS_TERM" "COMPONENT_ID" "COMPONENT_TERM"
## [5] "CONFIDENCE_CODE" "ENTREZ" "EVIDENCE" "EVIDENCE_TYPE"
## [9] "FAMILY_ID" "FAMILY_TERM" "GOSLIM_ID" "GOSLIM_TERM"
## [13] "PATHWAY_ID" "PATHWAY_TERM" "SPECIES" "SUBFAMILY_TERM"
## [17] "UNIPROT"
Some of these fields can also be used as keytypes:
keytypes(PANTHER.db)
## [1] "CLASS_ID" "COMPONENT_ID" "ENTREZ" "FAMILY_ID" "GOSLIM_ID"
## [6] "PATHWAY_ID" "SPECIES" "UNIPROT"
It is also possible to display all possible keys of a table for
any keytype. If keytype is unspecified, the FAMILY_ID
will be returned.
go_ids <- head(keys(PANTHER.db,keytype="GOSLIM_ID"))
go_ids
## [1] "GO:0000002" "GO:0000003" "GO:0000014" "GO:0000018" "GO:0000027"
## [6] "GO:0000030"
Finally, you can loop up whatever combinations of columns, keytypes and keys
that you need when using select
or mapIds
.
cols <- "CLASS_ID"
res <- mapIds(PANTHER.db, keys=go_ids, column=cols, keytype="GOSLIM_ID", multiVals="list")
lengths(res)
## GO:0000002 GO:0000003 GO:0000014 GO:0000018 GO:0000027 GO:0000030
## 10 64 6 8 4 5
res_inner <- select(PANTHER.db, keys=go_ids, columns=cols, keytype="GOSLIM_ID")
nrow(res_inner)
## [1] 97
tail(res_inner)
## GOSLIM_ID CLASS_ID
## 1322 GO:0000027 PC00170
## 1368 GO:0000030 PC00111
## 1369 GO:0000030 PC00220
## 1378 GO:0000030 PC00092
## 1379 GO:0000030 PC00198
## 1380 GO:0000030 PC00176
By default, all tables will be joined using the central table with PANTHER family IDs by an inner join. Therefore all rows without an associated PANTHER family ID will be removed from the output. To include all results with an associated PANTHER family ID, the argument jointype
of the select
function must be set to left
.
res_left <- select(PANTHER.db, keys=go_ids, columns=cols,keytype="GOSLIM_ID", jointype="left")
nrow(res_left)
## [1] 1978
tail(res_left)
## GOSLIM_ID FAMILY_ID CLASS_ID
## 1973 GO:0000030 PTHR43398:SF2 PC00220
## 1974 GO:0000030 PTHR43398:SF3 PC00111
## 1975 GO:0000030 PTHR43398:SF3 PC00220
## 1976 GO:0000030 PTHR45918:SF2 <NA>
## 1977 GO:0000030 PTHR45919 <NA>
## 1978 GO:0000030 PTHR45919:SF1 <NA>
To access the PANTHER Protein Class ontology tree structure, the
method traverseClassTree
can be used:
term <- "PC00209"
select(PANTHER.db,term, "CLASS_TERM","CLASS_ID")
## CLASS_ID CLASS_TERM
## 1 PC00209 sodium channel
ancestors <- traverseClassTree(PANTHER.db,term,scope="ANCESTOR")
select(PANTHER.db,ancestors, "CLASS_TERM","CLASS_ID")
## CLASS_ID CLASS_TERM
## 1 PC00133 ion channel
## 703 PC00227 transporter
parents <- traverseClassTree(PANTHER.db,term,scope="PARENT")
select(PANTHER.db,parents, "CLASS_TERM","CLASS_ID")
## CLASS_ID CLASS_TERM
## 1 PC00133 ion channel
children <- traverseClassTree(PANTHER.db,term,scope="CHILD")
select(PANTHER.db,children, "CLASS_TERM","CLASS_ID")
## CLASS_ID CLASS_TERM
## 1 PC00243 voltage-gated sodium channel
offspring <- traverseClassTree(PANTHER.db,term,scope="OFFSPRING")
select(PANTHER.db,offspring, "CLASS_TERM","CLASS_ID")
## CLASS_ID CLASS_TERM
## 1 PC00243 voltage-gated sodium channel
sessionInfo()
## R Under development (unstable) (2019-10-31 r77351)
## Platform: x86_64-apple-darwin17.7.0 (64-bit)
## Running under: macOS High Sierra 10.13.6
##
## Matrix products: default
## BLAS: /Users/ka36530_ca/R-stuff/bin/R-devel/lib/libRblas.dylib
## LAPACK: /Users/ka36530_ca/R-stuff/bin/R-devel/lib/libRlapack.dylib
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] PANTHER.db_1.0.10 RSQLite_2.1.2 AnnotationHub_2.19.1
## [4] BiocFileCache_1.11.2 dbplyr_1.4.2 AnnotationDbi_1.49.0
## [7] IRanges_2.21.1 S4Vectors_0.25.0 Biobase_2.47.0
## [10] BiocGenerics_0.33.0 BiocStyle_2.15.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.3 later_1.0.0
## [3] compiler_4.0.0 pillar_1.4.2
## [5] BiocManager_1.30.9 tools_4.0.0
## [7] zeallot_0.1.0 digest_0.6.22
## [9] bit_1.1-14 evaluate_0.14
## [11] memoise_1.1.0 tibble_2.1.3
## [13] pkgconfig_2.0.3 rlang_0.4.1
## [15] shiny_1.4.0 DBI_1.0.0
## [17] curl_4.2 yaml_2.2.0
## [19] xfun_0.11 fastmap_1.0.1
## [21] httr_1.4.1 stringr_1.4.0
## [23] dplyr_0.8.3 knitr_1.26
## [25] rappdirs_0.3.1 vctrs_0.2.0
## [27] tidyselect_0.2.5 bit64_0.9-7
## [29] glue_1.3.1 R6_2.4.1
## [31] rmarkdown_1.17 bookdown_0.15
## [33] purrr_0.3.3 blob_1.2.0
## [35] magrittr_1.5 promises_1.1.0
## [37] backports_1.1.5 htmltools_0.4.0
## [39] assertthat_0.2.1 xtable_1.8-4
## [41] mime_0.7 interactiveDisplayBase_1.25.0
## [43] httpuv_1.5.2 stringi_1.4.3
## [45] BiocVersion_3.11.0 crayon_1.3.4