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Chapter 1

Introduction

IDA is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic equation Solvers
[36]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants of these with sensitivity analysis
capabilities, CVODES and IDAS.

IDA is a general purpose solver for the initial value problem (IVP) for systems of differential-algebraic equations
(DAEs). The name IDA stands for Implicit Differential-Algebraic solver. IDA is based on DASPK [17, 18], but is
written in ANSI-standard C rather than Fortran77. Its most notable features are that, (1) in the solution of the underlying
nonlinear system at each time step, it offers a choice of Newton/direct methods and a choice of Inexact Newton/Krylov
(iterative) methods; and (2) it is written in a data-independent manner in that it acts on generic vectors and matrices
without any assumptions on the underlying organization of the data. Thus IDA shares significant modules previously
written within CASC at LLNL to support the ordinary differential equation (ODE) solvers CVODE [23, 39] and PVODE
[21, 22], and also the nonlinear system solver KINSOL [40].

At present, IDA may utilize a variety of Krylov methods provided in SUNDIALS that can be used in conjuction
with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [49], FGMRES (Flexible Gen-
eralized Minimum RESidual) [48], Bi-CGStab (Bi-Conjugate Gradient Stabilized) [53], TFQMR (Transpose-Free
Quasi-Minimal Residual) [31], and PCG (Preconditioned Conjugate Gradient) [33] linear iterative methods. As Krylov
methods, these require little matrix storage for solving the Newton equations as compared to direct methods. However,
the algorithms allow for a user-supplied preconditioner, and, for most problems, preconditioning is essential for an
efficient solution.

For very large DAE systems, the Krylov methods are preferable over direct linear solver methods, and are often the
only feasible choice. Among the Krylov methods in SUNDIALS, we recommend GMRES as the best overall choice.
However, users are encouraged to compare all options, especially if encountering convergence failures with GMRES.
Bi-CGFStab and TFQMR have an advantage in storage requirements, in that the number of workspace vectors they
require is fixed, while that number for GMRES depends on the desired Krylov subspace size. FGMRES has an advan-
tage in that it is designed to support preconditioners that vary between iterations (e.g. iterative methods). PCG exhibits
rapid convergence and minimal workspace vectors, but only works for symmetric linear systems.
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1.1 Changes from previous versions

1.1.1 Changes in v6.4.1

Fixed a bug with the Kokkos interfaces that would arise when using clang.

Fixed a compilation error with the Intel one API 2022.2 Fortran compiler in the Fortran 2003 interface test for the serial
N_Vector.

Fixed a bug in the SUNLINSOL_LAPACKBAND and SUNLINSOL_LAPACKDENSE modules which would cause
the tests to fail on some platforms.

1.1.2 Changes in v6.4.0

CMake 3.18.0 or newer is now required for CUDA support.

A C++14 compliant compiler is now required for C++ based features and examples e.g., CUDA, HIP, RAJA, Trilinos,
SuperLU_DIST, MAGMA, GINKGO, and KOKKOS.

Added support for GPU enabled SuperLU_DIST and SuperLU_DIST v8.x.x. Removed support for SuperLU_DIST
v6.x.x or older. Fix mismatched definition and declaration bug in SuperLU_DIST matrix constructor.

Added support for the Ginkgo linear algebra library. This support includes new SUNMatrix and SUNLinearSolver
implementations, see the sections §7.10 and §8.18.

Added new NVector, dense SUNMatrix, and dense SUNLinearSolver implementations utilizing the Kokkos Ecosys-
tem for performance portability, see sections §6.14, §7.11, and §8.19 for more information.

Fixed a bug in the CUDA and HIP vectors where N_VMaxNorm() would return the minimum positive floating-point
value for the zero vector.

1.1.3 Changes in v6.3.0

Added the function IDAGetUserData() to retrieve the user data pointer provided to IDASetUserData().

Fixed the unituitive behavior of the USE_GENERIC_MATH CMake option which caused the double precision math func-
tions to be used regardless of the value of SUNDIALS_PRECISION. Now, SUNDIALS will use precision appropriate
math functions when they are available and the user may provide the math library to link to via the advanced CMake
option SUNDIALS_MATH_LIBRARY.

Changed SUNDIALS_LOGGING_ENABLE_MPI CMake option default to be ‘OFF’.

1.1.4 Changes in v6.2.0

Added the SUNLogger API which provides a SUNDIALS-wide mechanism for logging of errors, warnings, informa-
tional output, and debugging output.

Deprecated SUNNonlinSolSetPrintLevel Newton(), SUNNonlinSolSetInfoFile_Newton(), SUNNon-
linSolSetPrintLevel_FixedPoint(), SUNNonlinSolSetInfoFile_FixedPoint(), SUNLinSolSet-
InfoFile_PCG(), SUNLinSolSetPrintLevel_PCG(), SUNLinSolSetInfoFile_SPGMR(), SUNLinSolSet-
PrintLevel_SPGMR(), SUNLinSolSetInfoFile_SPFGMR(), SUNLinSolSetPrintLevel_SPFGMR(), SUNLin-
SolSetInfoFile_SPTFQM(), SUNLinSolSetPrintLevel_ SPTFQMR(), SUNLinSolSetInfoFile_SPBCGS(),
SUNLinSolSetPrintLevel _SPBCGS() it is recommended to use the SUNLogger APl instead. The SUNLinSolSet-
InfoFile_** and SUNNonlinSolSetInfoFile_* family of functions are now enabled by setting the CMake option
SUNDIALS_LOGGING_LEVEL to a value >= 3.
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Added the function SUNProfiler_Reset () to reset the region timings and counters to zero.

Added the function IDAPrintAllStats() to output all of the integrator, nonlinear solver, linear solver, and other
statistics in one call. The file scripts/sundials_csv.py contains functions for parsing the comma-separated value
output files.

Added the function IDASetDetlaCjLSetup() to adjust the parameter that determines when a change in ¢; requires
calling the linear solver setup function.

Added the functions IDASetEtaFixedStepBounds(), IDASetEtaMax(), IDASetEtaMin(), IDASetEtaLow(),
IDASetEtaMinErrFail (), and IDASetEtaConvFail () to adjust various parameters controlling changes in step size.

Added the function IDASetMinStep () to set a minimum step size.

The behavior of N_VSetKernelExecPolicy_Sycl() has been updated to be consistent with the CUDA and HIP
vectors. The input execution policies are now cloned and may be freed after calling N_VSetKernelExecPolicy_-
Sycl(). Additionally, NULL inputs are now allowed and, if provided, will reset the vector execution policies to the
defaults.

Fixed the SUNContext convenience class for C++ users to disallow copy construction and allow move construction.
A memory leak in the SYCL vector was fixed where the execution policies were not freed when the vector was destroyed.

The include guard in nvector_mpimanyvector.h has been corrected to enable using both the Many Vector and MPI-
Many Vector N'Vector implementations in the same simulation.

Changed exported SUNDIALS PETSc CMake targets to be INTERFACE IMPORTED instead of UNKNOWN IM-
PORTED.

A bug was fixed in the functions IDAGe tNumNonlinSolvConvFails () and IDAGetNonlinSolvStats() where the
number of nonlinear solver failures returned was the number of failed steps due to a nonlinear solver failure i.e., if
a nonlinear solve failed with a stale Jacobian or preconditioner but succeeded after updating the Jacobian or precon-
ditioner, the initial failure was not included in the nonlinear solver failure count. These functions have been updated
to return the total number of nonlinear solver failures. As such users may see an increase in the number of failures
reported.

The function IDAGetNumStepSolveFails () has been added to retrieve the number of failed steps due to a nonlinear
solver failure. The count returned by this function will match those previously returned by IDAGetNumNonlinSolv-
ConvFails() and IDAGetNonlinSolvStats().

1.1.5 Changes in v6.1.1

Fixed exported SUNDIALSConfig.cmake.

1.1.6 Changes in v6.1.0

Added new reduction implementations for the CUDA and HIP NVECTORs that use shared memory (local data storage)
instead of atomics. These new implementations are recommended when the target hardware does not provide atomic
support for the floating point precision that SUNDIALS is being built with. The HIP vector uses these by default, but
the N_VSetKernelExecPolicy_Cuda() and N_VSetKernelExecPolicy_Hip() functions can be used to choose
between different reduction implementations.

SUNDIALS: : <1ib> targets with no static/shared suffix have been added for use within the build directory (this mirrors
the targets exported on installation).

CMAKE_C_STANDARD is now set to 99 by default.
Fixed exported SUNDIALSConfig.cmake when profiling is enabled without Caliper.

Fixed sundials_export.h include in sundials_config.h.

1.1. Changes from previous versions 3
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Fixed memory leaks in the SUNLINSOL_SUPERLUMT linear solver.

1.1.7 Changes in v6.0.0

SUNContext

SUNDIALS v6.0.0 introduces a new SUNContext object on which all other SUNDIALS objects depend. As such, the
constructors for all SUNDIALS packages, vectors, matrices, linear solvers, nonlinear solvers, and memory helpers
have been updated to accept a context as the last input. Users upgrading to SUNDIALS v6.0.0 will need to call
SUNContext_Create() to create a context object with before calling any other SUNDIALS library function, and then
provide this object to other SUNDIALS constructors. The context object has been introduced to allow SUNDIALS to
provide new features, such as the profiling/instrumentation also introduced in this release, while maintaining thread-
safety. See the documentation section on the SUNContext for more details.

A script upgrade-to-sundials-6-from-5.sh has been provided with the release (obtainable from the GitHub re-
lease page) to help ease the transition to SUNDIALS v6.0.0. The script will add a SUNCTX_PLACEHOLDER argument
to all of the calls to SUNDIALS constructors that now require a SUNContext object. It can also update deprecated
SUNDIALS constants/types to the new names. It can be run like this:

> ./upgrade-to-sundials-6-from-5.sh <files to update>

SUNProfiler

A capability to profile/instrument SUNDIALS library code has been added. This can be enabled with the CMake option
SUNDIALS_BUILD_WITH_PROFILING. A built-in profiler will be used by default, but the Caliper library can also be
used instead with the CMake option ENABLE_CALIPER. See the documentation section on profiling for more details.
WARNING: Profiling will impact performance, and should be enabled judiciously.

SUNMemoryHelper

The SUNMemoryHelper functions SUNMemoryHelper_Alloc(), SUNMemoryHelper_Dealloc(), and SUNMemory-
Helper_Copy () have been updated to accept an opaque handle as the last input. At a minimum, user-defined SUN-
MemoryHelper implementations will need to update these functions to accept the additional argument. Typically, this
handle is the execution stream (e.g., a CUDA/HIP stream or SYCL queue) for the operation. The CUDA, HIP, and
SYCL implementations have been updated accordingly. Additionally, the constructor SUNMemoryHelper_Sycl() has
been updated to remove the SYCL queue as an input.

NVector

Two new optional vector operations, N_VDotProdMultiLocal () and N_VDotProdMultiAlIlReduce(), have been
added to support low-synchronization methods for Anderson acceleration.

The CUDA, HIP, and SYCL execution policies have been moved from the sundials namespace to the sundi-
als::cuda, sundials::hip, and sundials: :sycl namespaces respectively. Accordingly, the prefixes “Cuda”,
“Hip”, and “Sycl” have been removed from the execution policy classes and methods.

The Sundials namespace used by the Trilinos Tpetra NVector has been replaced with the sundi-
als::trilinos: :nvector_tpetra namespace.

The serial, PThreads, PETSc, hypre, Parallel, OpenMP_DEYV, and OpenMP vector functions N_VCloneVectorAr-
ray_* and N_VDestroyVectorArray_%* have been deprecated. The generic N_VCloneVectorArray () and N_VDe-
stroyVectorArray () functions should be used instead.

The previously deprecated constructor N_VMakeWithManagedAllocator_Cuda and the function N_VSetCudaS-
tream_Cuda have been removed and replaced with N_VNewliithMemHelp_Cuda() and N_VSetKerrnelExecPol-
icy_Cuda() respectively.

The previously deprecated macros PVEC_REAL_MPI_TYPE and PVEC_INTEGER_MPI_TYPE have been removed and
replaced with MPI_SUNREALTYPE and MPI_SUNINDEXTYPE respectively.
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SUNLinearSolver

The following previously deprecated functions have been removed:

IDA

The IDA Fortran 77 interface has been removed. See §4.5 and the F2003 example programs for more details using the

Removed Replacement
SUNBandLinearSolver SUNLinSol_Band()
SUNDenseLinearSolver SUNLinSol_Dense()

SUNKLU SUNLinSol_KLU()

SUNKLUReInit SUNLinSol_KLUReInit()
SUNKLUSetOrdering SUNLinSol_KLUSetOrdering ()
SUNLapackBand SUNLinSol_LapackBand()
SUNLapackDense SUNLinSol_LapackDense()
SUNPCG SUNLinSol_PCG()
SUNPCGSetPrecType SUNLinSol_PCGSetPrecType()
SUNPCGSetMax1l SUNLinSol_PCGSetMax1()
SUNSPBCGS SUNLinSol_SPBCGS()
SUNSPBCGSSetPrecType SUNLinSol_SPBCGSSetPrecType()
SUNSPBCGSSetMax1 SUNLinSol_SPBCGSSetMax1()
SUNSPFGMR SUNLinSol_SPFGMR()
SUNSPFGMRSetPrecType SUNLinSol_SPFGMRSetPrecType()
SUNSPFGMRSetGSType SUNLinSol_SPFGMRSetGSType()

SUNSPFGMRSetMaxRestarts

SUNLinSol_SPFGMRSetMaxRestarts()

SUNSPGMR

SUNLinSol_SPGMR()

SUNSPGMRSetPrecType SUNLinSol_SPGMRSetPrecType()
SUNSPGMRSetGSType SUNLinSol_SPGMRSetGSType ()
SUNSPGMRSetMaxRestarts SUNLinSol_SPGMRSetMaxRestarts()
SUNSPTFQMR SUNLinSol_SPTFQMR()
SUNSPTFQMRSetPrecType SUNLinSol_SPTFQMRSetPrecType()
SUNSPTFQMRSetMax1l SUNLinSol_SPTFQMRSetMax1()
SUNSuperLUMT SUNLinSol_SuperLUMT()

SUNSuperLUMTSetOrdering

SUNLinSol_SuperLUMTSetOrdering()

SUNDIALS Fortran 2003 module interfaces.

Deprecations

In addition to the deprecations noted elsewhere, many constants, types, and functions have been renamed so that they
are properly namespaced. The old names have been deprecated and will be removed in SUNDIALS v7.0.0.

The following constants, macros, and typedefs are now deprecated:

1.1. Changes from previous versions
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Deprecated Name | New Name
realtype sunrealtype
booleantype sunbooleantype
RCONST SUN_RCONST
BIG_REAL SUN_BIG_REAL
SMALL_REAL SUN_SMALL_REAL
UNIT_ROUNDOFF SUN_UNIT_ROUNDOFF
PREC_NONE SUN_PREC_NONE
PREC_LEFT SUN_PREC_LEFT
PREC_RIGHT SUN_PREC_RIGHT
PREC_BOTH SUN_PREC_BOTH

MODIFIED_GS

SUN_MODIFIED_GS

CLASSICAL_GS

SUN_CLASSICAL_GS

ATimesFn SUNATimesFn

PSetupFn SUNPSetupFn

PSolveFn SUNPSolveFn

DlsMat SUND1lsMat

DENSE_COL SUNDLS_DENSE_COL
DENSE_ELEM SUNDLS_DENSE_ELEM
BAND_COL SUNDLS_BAND_COL
BAND_COL_ELEM SUNDLS_BAND_COL_ELEM
BAND_ELEM SUNDLS_BAND_ELEM

In addition, the following functions are now deprecated (compile-time warnings will be thrown if supported by the

compiler):
Deprecated Name New Name
IDASpilsSetLinearSolver IDASetLinearSolver
IDASpilsSetPreconditioner IDASetPreconditioner
IDASpilsSetJacTimes IDASetJacTimes
IDASpilsSetEpsLin IDASetEpsLin
IDASpilsSetIncrementFactor | IDASetIncrementFactor
IDASpilsGetWorkSpace IDAGetLinWorkSpace
IDASpilsGetNumPrecEvals IDAGetNumPrecEvals
IDASpilsGetNumPrecSolves IDAGetNumPrecSolves
IDASpilsGetNumLinIters IDAGetNumLinIters
IDASpilsGetNumConvFails IDAGetNumLinConvFails
IDASpilsGetNumJTSetupEvals | IDAGetNumJTSetupEvals
IDASpilsGetNumJtimesEvals IDAGetNumJtimesEvals
IDASpilsGetNumResEvals IDAGetNumLinResEvals
IDASpilsGetLastFlag IDAGetLastLinFlag
IDASpilsGetReturnFlagName IDAGetLinReturnFlagName
IDADlsSetLinearSolver IDASetLinearSolver
IDADlsSetJacFn IDASetJacFn
IDAD]lsGetWorkSpace IDAGetLinWorkSpace
IDAD1sGetNumJacEvals IDAGetNumJacEvals
IDAD1sGetNumResEvals IDAGetNumLinResEvals
IDAD1sGetLastFlag IDAGetLastLinFlag
IDAD1sGetReturnFlagName IDAGetLinReturnFlagName
DenseGETRF SUND1sMat_DenseGETRF

continues on next page
6 Chapter 1. Introduction
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Table 1.1 — continued from previous page

Deprecated Name

New Name

DenseGETRS SUND1sMat_DenseGETRS
denseGETRF SUND1sMat_denseGETRF
denseGETRS SUND1sMat_denseGETRS
DensePOTRF SUND1sMat_DensePOTRF
DensePOTRS SUND1sMat_DensePOTRS
densePOTRF SUND1sMat_densePOTRF
densePOTRS SUND1sMat_densePOTRS
DenseGEQRF SUND1sMat_DenseGEQRF
DenseORMQR SUND1sMat_DenseORMQR
denseGEQRF SUND1sMat_denseGEQRF
denseORMQR SUND1sMat_denseORMQR
DenseCopy SUND1sMat_DenseCopy
denseCopy SUND1lsMat_denseCopy
DenseScale SUND1sMat_DenseScale
denseScale SUND1sMat_denseScale
denseAddIdentity SUND1sMat_denseAddIdentity
DenseMatvec SUND1sMat_DenseMatvec
denseMatvec SUND1sMat_denseMatvec
BandGBTRF SUND1sMat_BandGBTRF
bandGBTRF SUND1sMat_bandGBTRF
BandGBTRS SUND1sMat_BandGBTRS
bandGBTRS SUND1sMat_bandGBTRS
BandCopy SUND1sMat_BandCopy
bandCopy SUND1sMat_bandCopy
BandScale SUND1sMat_BandScale
bandScale SUND1sMat_bandScale
bandAddIdentity SUND1lsMat_bandAddIdentity
BandMatvec SUND1sMat_BandMatvec
bandMatvec SUND1sMat_bandMatvec
ModifiedGS SUNModifiedGS
ClassicalGS SUNClassicalGS

QRfact SUNQRFact

QRsol SUNQRsol

DlsMat_NewDenseMat

SUND1sMat_NewDenseMat

DlsMat_NewBandMat

SUND1sMat_NewBandMat

DestroyMat SUND1lsMat_DestroyMat
NewIntArray SUND1sMat_NewIntArray
NewIndexArray SUND1sMat_NewIndexArray
NewRealArray SUND1sMat_NewRealArray
DestroyArray SUNDlsMat_DestroyArray
AddIdentity SUND1sMat_AddIdentity
SetToZero SUND1sMat_SetToZero
PrintMat SUND1lsMat_PrintMat
newDenseMat SUND1sMat_newDenseMat
newBandMat SUND1sMat_newBandMat
destroyMat SUND1lsMat_destroyMat
newIntArray SUND1sMat_newIntArray
newIndexArray SUND1lsMat_newIndexArray
newRealArray SUND1sMat_newRealArray

continues on next page
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Table 1.1 — continued from previous page
Deprecated Name New Name
destroyArray SUND1sMat_destroyArray

In addition, the entire sundials_lapack.h header file is now deprecated for removal in SUNDIALS v7.0.0. Note,
this header file is not needed to use the SUNDIALS LAPACK linear solvers.

1.1.8 Changes in v5.8.0

The RAJA N_Vector implementation has been updated to support the SYCL backend in addition to the CUDA and HIP
backends. Users can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS
CMake variable. This module remains experimental and is subject to change from version to version.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the Intel oneAPI Math Kernel
Library (oneMKL). Both the matrix and the linear solver support general dense linear systems as well as block diagonal
linear systems. See §8.9 for more details. This module is experimental and is subject to change from version to version.

Added a new optional function to the SUNLinearSolver API, SUNLinSolSetZeroGuess (), to indicate that the next
call to SUNLinSolSolve () will be made with a zero initial guess. SUNLinearSolver implementations that do not use
the SUNLinSolNewEmpty () constructor will, at a minimum, need set the setzeroguess function pointer in the linear
solver ops structure to NULL. The SUNDIALS iterative linear solver implementations have been updated to leverage
this new set function to remove one dot product per solve.

IDA now supports a new “matrix-embedded” SUNLinearSolver type. This type supports user-supplied SUNLinear-
Solver implementations that set up and solve the specified linear system at each linear solve call. Any matrix-related
data structures are held internally to the linear solver itself, and are not provided by the SUNDIALS package.

Added the function IDASetN1sResFn() to supply an alternative residual side function for use within nonlinear system
function evaluations.

The installed SUNDIALSConfig. cmake file now supports the COMPONENTS option to find_package.
A bug was fixed in SUNMatCopyOps () where the matrix-vector product setup function pointer was not copied.

A bug was fixed in the SPBCGS and SPTFQMR solvers for the case where a non-zero initial guess and a solution
scaling vector are provided. This fix only impacts codes using SPBCGS or SPTFQMR as standalone solvers as all
SUNDIALS packages utilize a zero initial guess.

1.1.9 Changes in v5.7.0

A new N_Vector implementation based on the SYCL abstraction layer has been added targeting Intel GPUs. At present
the only SYCL compiler supported is the DPC++ (Intel oneAPI) compiler. See §6.12 for more details. This module is
considered experimental and is subject to major changes even in minor releases.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the MAGMA linear algebra
library. Both the matrix and the linear solver support general dense linear systems as well as block diagonal linear
systems, and both are targeted at GPUs (AMD or NVIDIA). See §8.8 for more details.
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1.1.10 Changes in v5.6.1

Fixed a bug in the SUNDIALS CMake which caused an error if the CMAKE_CXX_STANDARD and SUNDIALS_RAJA_-
BACKENDS options were not provided.

Fixed some compiler warnings when using the IBM XL compilers.

1.1.11 Changes in v5.6.0

A new N_Vector implementation based on the AMD ROCm HIP platform has been added. This vector can target
NVIDIA or AMD GPUs. See §6.11 for more details. This module is considered experimental and is subject to change
from version to version.

The NVECTOR_RAJA implementation has been updated to support the HIP backend in addition to the CUDA back-
end. Users can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS CMake
variable. This module remains experimental and is subject to change from version to version.

A new optional operation, N_VGetDeviceArrayPointer (), was added to the N_Vector API. This operation is useful
for N_Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA N_Vector.

The SUNMATRIX_CUSPARSE and SUNLINEARSOLVER_CUSOLVERSP_BATCHQR implementations no longer re-
quire the SUNDIALS CUDA N_Vector. Instead, they require that the vector utilized provides the N_VGetDeviceAr-
rayPointer () operation, and that the pointer returned by N_VGetDeviceArrayPointer () is a valid CUDA device
pointer.

1.1.12 Changes in v5.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see deprecation
warnings, but otherwise the changes should be fully backwards compatible for almost all users. SUNDIALS now
exports CMake targets and installs a SUNDIALSConfig. cmake file.

Added support for SuperLU_DIST 6.3.0 or newer.

1.1.13 Changes in v5.4.0

Added the function IDASetLSNormFactor() to specify the factor for converting between integrator tolerances
(WRMS norm) and linear solver tolerances (L2 norm) i.e., tol_L2 = nrmfac * tol_WRMS.

The expected behavior of SUNNonlinSolGetNumIters() and SUNNonlinSolGetNumConvFails () in the SUNNon-
linearSolver API have been updated to specify that they should return the number of nonlinear solver iterations and
convergence failures in the most recent solve respectively rather than the cumulative number of iterations and failures
across all solves respectively. The API documentation and SUNDIALS provided SUNNonlinearSolver implemen-
tations have been updated accordingly. As before, the cumulative number of nonlinear iterations may be retreived
by calling IDAGetNumNonlinSolvIters(), the cumulative number of failures with IDAGetNumNonlinSolvCon-
vFails (), or both with IDAGetNonlinSolvStats().

A new API, SUNMemoryHelper, was added to support GPU users who have complex memory management needs
such as using memory pools. This is paired with new constructors for the NVECTOR_CUDA and NVECTOR_RAJA
modules that accept a SUNMemoryHelper object. Refer to §4.6 and §10 for more information.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the update adds
managed memory support to the NVECTOR_RAJA module. Users of the module will need to update any calls to the
N_VMake_Raja() function because that signature was changed. This module remains experimental and is subject to
change from version to version.
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The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.18+. This update changes the local
ordinal type to always be an int.

Added support for CUDA v11.

1.1.14 Changes in v5.3.0

Fixed a bug in the iterative linear solver modules where an error is not returned if the ATimes function is NULL or, if
preconditioning is enabled, the PSolve function is NULL.

Added anew function IDAGetNonlinearSystemData () which advanced users might find useful if providing a custom
SUNNonlinSolSysFn.

Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and SUNMATRIX_CUS-
PARSE modules. These modules remain experimental and are subject to change from version to version. In addition,
the NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see equivalent performance or
some improvement, but a select few may observe minor performance degradation with the default settings. Users are
encouraged to contact the SUNDIALS team about any performance changes that they notice.

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and SUNNONLINSOL_-
FIXEDPOINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS must be built with the CMake
option SUNDIALS_BUILD_WITH_MONITORING to use these capabilities.

Added the optional function IDASetJacTimesResFn() to specify an alternative residual function for computing
Jacobian-vector products with the internal difference quotient approximation.

1.1.15 Changes in v5.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL compiler. When building
the Fortran 2003 interfaces with an XL compiler it is recommended to set CMAKE_Fortran_COMPILER to £2003,
x1£2003, or x1£2003_r.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attributes missing on some SUN-
DIALS API functions.

Added a new SUNMatrix implementation, SUNMATRIX_CUSPARSE, that interfaces to the sparse matrix implemen-
tation from the NVIDIA cuSPARSE library. In addition, the SUNLINSOL_CUSOLVER_BATCHQR linear solver has
been updated to use this matrix, therefore, users of this module will need to update their code. These modules are still
considered to be experimental, thus they are subject to breaking changes even in minor releases.

The function IDASetLinearSolutionScaling () was added to enable or disable the scaling applied to linear system
solutions with matrix-based linear solvers to account for a lagged value of « in the linear system matrix J = %—5 + a%—g.
Scaling is enabled by default when using a matrix-based linear solver.

1.1.16 Changes in v5.1.0

Fixed a build system bug related to finding LAPACK/BLAS.
Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES and PETSC_-
LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture to compile for.

Added two utility functions, FSUNDIALSFileOpen() and FSUNDIALSFileClose() for creating/destroying file point-
ers that are useful when using the Fortran 2003 interfaces.

10 Chapter 1. Introduction



User Documentation for IDA, v6.4.1

1.1.17 Changes in v5.0.0

1.1.17.1 Build system changes

* Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and 3.10 when
CUDA or OpenMP with device offloading are enabled.

e The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify builds
as SUNDIALS packages do not use BLAS directly. For third party libraries that require linking to BLAS,
the path to the BLAS library should be included in the *_LIBRARIES variable for the third party library e.g.,
SUPERLUDIST_LIBRARIES when enabling SuperLU_DIST.

* Fixed a bug in the build system that prevented the NVECTOR_PTHREADS module from being built.

1.1.17.2 NVECTOR module changes

* Two new functions were added to aid in creating custom N_Vector objects. The constructor N_VNewEmpty ()
allocates an “empty” generic N_Vector with the object’s content pointer and the function pointers in the oper-
ations structure initialized to NULL. When used in the constructor for custom objects this function will ease the
introduction of any new optional operations to the N_Vector API by ensuring only required operations need to
be set. Additionally, the function N_VCopyOps () has been added to copy the operation function pointers be-
tween vector objects. When used in clone routines for custom vector objects these functions also will ease the
introduction of any new optional operations to the N_Vector API by ensuring all operations are copied when
cloning objects. See §6.1.1 for more details.

* Two new N_Vector implementations, NVECTOR_MANYVECTOR and NVECTOR_MPIMANYVECTOR, have
been created to support flexible partitioning of solution data among different processing elements (e.g., CPU +
GPU) or for multi-physics problems that couple distinct MPI-based simulations together. This implementation
is accompanied by additions to user documentation and SUNDIALS examples. See §6.17 and §6.18 for more
details.

* One new required vector operation and ten new optional vector operations have been added to the N_Vector
API. The new required operation, N_VGetLength(), returns the global length of an N_Vector. The optional
operations have been added to support the new NVECTOR_MPIMANYVECTOR implementation. The operation
N_VGetCommunicator () must be implemented by subvectors that are combined to create an NVECTOR_MPI-
MANYVECTOR, but is not used outside of this context. The remaining nine operations are optional local reduc-
tion operations intended to eliminate unnecessary latency when performing vector reduction operations (norms,
etc.) on distributed memory systems. The optional local reduction vector operations are N_VDotProdLocal (),
N_VMaxNormLocal (), N_VMinLocal (), N_VLI1NormLocal (), N_VWSqrSumLocal (), N_VWSqrSumMaskLo-
cal(), N_VInvTestLocal(), N_VConstrMaskLocal(), and N_VMinQuotientLocal(). If an N_Vector
implementation defines any of the local operations as NULL, then the NVECTOR_MPIMANYVECTOR will call
standard N_Vector operations to complete the computation. See §6.2.4 for more details.

* An additional N_Vector implementation, NVECTOR_MPIPLUSX, has been created to support the MPI+X
paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The implementation is accompanied
by additions to user documentation and SUNDIALS examples. See §6.19 for more details.

e The *_MPICuda and *_MPIRaja functions have been removed from the NVECTOR_CUDA and NVECTOR_-
RAJA implementations respectively. Accordingly, the nvector_mpicuda.h, nvector_mpiraja.h, lib-
sundials_nvecmpicuda.lib, and libsundials_nvecmpicudaraja.lib files have been removed. Users
should use the NVECTOR_MPIPLUSX module coupled in conjunction with the NVECTOR_CUDA or NVEC-
TOR_RAJA modules to replace the functionality. The necessary changes are minimal and should require few
code modifications. See the programs in examples/ida/mpicuda and examples/ida/mpiraja for examples
of how to use the NVECTOR_MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules
respectively.

* Fixed a memory leak in the NVECTOR_PETSC module clone function.
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Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default stream
should no longer see default stream synchronizations after memory transfers.

Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom allocate and free
functions for the vector data array and internal reduction buffer. See §6.10 for more details.

Added new Fortran 2003 interfaces for most N_Vector modules. See §6 for more details on how to use the
interfaces.

Added three new N_Vector utility functions, FN_VGetVecAtIndexVectorArray(), FN_VSetVecAtIn-
dexVectorArray(), and FN_VNewVectorArray (), for working with N_Vector arrays when using the Fortran
2003 interfaces. See §6.1.1 for more details.

1.1.17.3 SUNMatrix module changes

Two new functions were added to aid in creating custom SUNMatrix objects. The constructor SUNMat-
NewEmpty () allocates an “empty” generic SUNMatrix with the object’s content pointer and the function pointers
in the operations structure initialized to NULL. When used in the constructor for custom objects this function will
ease the introduction of any new optional operations to the SUNMatrix API by ensuring only required opera-
tions need to be set. Additionally, the function SUNMatCopyOps () has been added to copy the operation function
pointers between matrix objects. When used in clone routines for custom matrix objects these functions also will
ease the introduction of any new optional operations to the SUNMatrix API by ensuring all operations are copied
when cloning objects. See §7.1 for more details.

A new operation, SUNMatMatvecSetup (), was added to the SUNMatrix API to perform any setup necessary
for computing a matrix-vector product. This operation is useful for SUNMatrix implementations which need to
prepare the matrix itself, or communication structures before performing the matrix-vector product. Users who
have implemented custom SUNMatrix modules will need to at least update their code to set the corresponding
ops structure member, matvecsetup, to NULL. See §7.1 for more details.

The generic SUNMatrix API now defines error codes to be returned by SUNMatrix operations. Operations which
return an integer flag indicating success/failure may return different values than previously.

A new SUNMatrix (and SUNLinearSolver) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS. See §7.9 for more details.

Added new Fortran 2003 interfaces for most SUNMatrix modules. See §7 for more details on how to use the
interfaces.

1.1.17.4 SUNLinearSolver module changes

* A new function was added to aid in creating custom SUNLinearSolver objects. The constructor SUNLinSol-

NewEmpty () allocates an “empty” generic SUNLinearSolver with the object’s content pointer and the function
pointers in the operations structure initialized to NULL. When used in the constructor for custom objects this
function will ease the introduction of any new optional operations to the SUNLinearSolver API by ensuring
only required operations need to be set. See §8.1.8 for more details.

The return type of the SUNLinearSolver API function SUNLinSolLastFlag() has changed from long int
to sunindextype to be consistent with the type used to store row indices in dense and banded linear solver
modules.

Added a new optional operation to the SUNLinearSolver API, SUNLinSolGetID(), that returns a SUNLin-
earSolver_ID for identifying the linear solver module.

The SUNLinearSolver API has been updated to make the initialize and setup functions optional.

A new SUNLinearSolver (and SUNMatrix) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS. See §8.15 for more details.
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Added anew SUNLinearSolver implementation, SUNLinearSolver_cuSolverSp_batchQR, which leverages the
NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal linear systems on NVIDIA
GPUs. See §8.17 for more details.

Added three new accessor functions to the SUNLINSOL_KLU module, SUNLinSol_KLUGetSymbolic(), SUN-
LinSol_KLUGetNumeric(), and SUNLinSol_KLUGetCommon (), to provide user access to the underlying KLU
solver structures. See §8.5 for more details.

Added new Fortran 2003 interfaces for most SUNLinearSolver modules. See §8 for more details on how to use
the interfaces.

1.1.17.5 SUNNonlinearSolver module changes

A new function was added to aid in creating custom SUNNonlinearSolver objects. The constructor SUNNon-
linSolNewEmpty () allocates an “empty” generic SUNNonlinearSolver with the object’s content pointer and
the function pointers in the operations structure initialized to NULL. When used in the constructor for custom
objects this function will ease the introduction of any new optional operations to the SUNNonlinearSolver
API by ensuring only required operations need to be set. See §9.1.7 for more details.

To facilitate the use of user supplied nonlinear solver convergence test functions the SUNNonlinSolSetCon-
vTestFn function in the SUNNonlinearSolver API has been updated to take a void* data pointer as input.
The supplied data pointer will be passed to the nonlinear solver convergence test function on each call.

The inputs values passed to the first two inputs of the SUNNonlinSolSolve () function in the SUNNonlinear-
Solver have been changed to be the predicted state and the initial guess for the correction to that state. Addition-
ally, the definitions of SUNNonlinSolLSetupFn and SUNNonlinSolLSolveFn in the SUNNonlinearSolver
API have been updated to remove unused input parameters. For more information see §9.

Added anew SUNNonlinearSolver implementation, SUNNONLINSOL_PETSC, which interfaces to the PETSc
SNES nonlinear solver API. See §9.5 for more details.

Added new Fortran 2003 interfaces for most SUNNonlinearSolver modules. See §9 for more details on how
to use the interfaces.

1.1.17.6 IDA changes

A bug was fixed in the IDA linear solver interface where an incorrect Jacobian-vector product increment was
used with iterative solvers other than SUNLINSOL_SPGMR and SUNLINSOL_SPFGMR.

Fixed a memeory leak in FIDA when not using the default nonlinear solver.

Removed extraneous calls to N_VMin () for simulations where the scalar valued absolute tolerance, or all entries
of the vector-valued absolute tolerance array, are strictly positive. In this scenario, IDA will remove at least one
global reduction per time step.

The IDALS interface has been updated to only zero the Jacobian matrix before calling a user-supplied Jacobian
evaluation function when the attached linear solver has type SUNLINEARSOLVER_DIRECT.

Added the new functions, IDAGetCurrentCj(), IDAGetCurrentY(), IDAGetCurrentYp(), IDACom-
puteY(), and IDAComputeYp () which may be useful to users who choose to provide their own nonlinear solver
implementations.

Added a Fortran 2003 interface to IDA. See §4.5 for more details.
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1.1.18 Changes in v4.1.0

An additional N_Vector implementation was added for the TPETRA vector from the TRILINOS library to facili-
tate interoperability between SUNDIALS and TRILINOS. This implementation is accompanied by additions to user
documentation and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA enables all
examples that use CUDA including the RAJA examples with a CUDA back end (if the RAJA N_Vector is enabled).

The implementation header file ida_impl.h is no longer installed. This means users who are directly manipulating
the IDAMem structure will need to update their code to use IDA’s public API.

Python is no longer required to run make test and make test_install.

1.1.19 Changes in v4.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The symbols are now included
in the IDA library, 1ibsundials_ida.

1.1.20 Changes in v4.0.1

No changes were made in this release.

1.1.21 Changes in v4.0.0

IDA’s previous direct and iterative linear solver interfaces, IDADLS and IDASPILS, have been merged into a single
unified linear solver interface, IDALS, to support any valid SUNLinearSolver module. This includes the “DIRECT”
and “ITERATIVE” types as well as the new “MATRIX_ITERATIVE” type. Details regarding how IDALS utilizes
linear solvers of each type as well as discussion regarding intended use cases for user-supplied SUNLinearSolver
implementations are included in §8. All IDA example programs and the standalone linear solver examples have been
updated to use the unified linear solver interface.

The unified interface for the new IDALS module is very similar to the previous IDADLS and IDASPILS interfaces. To
minimize challenges in user migration to the new names, the previous C and Fortran routine names may still be used;
these will be deprecated in future releases, so we recommend that users migrate to the new names soon. Additionally,
we note that Fortran users, however, may need to enlarge their iout array of optional integer outputs, and update the
indices that they query for certain linear-solver-related statistics.

The names of all constructor routines for SUNDIALS-provided SUNLinearSolver implementations have been up-
dated to follow the naming convention SUNLinSol_ where * is the name of the linear solver. The new names
are SUNLinSol_Band(), SUNLinSol_Dense (), SUNLinSol_KLU(), SUNLinSol_LapackBand(), SUNLinSol_La-
packDense (), SUNLinSol_PCG(), SUNLinSol_SPBCGS(), SUNLinSol_SPFGMR(), SUNLinSol_SPGMR(), SUN-
LinSol_SPTFQMR(), and SUNLinSol_SuperLUMT(). Solver-specific “set” routine names have been similarly stan-
dardized. To minimize challenges in user migration to the new names, the previous routine names may still be used;
these will be deprecated in future releases, so we recommend that users migrate to the new names soon. All IDA
example programs and the standalone linear solver examples have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth argument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through the SUNNon-
linearSolver API. This API will ease the addition of new nonlinear solver options and allow for external or user-
supplied nonlinear solvers. The SUNNonlinearSolver API and SUNDIALS provided modules are described in §9
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and follow the same object oriented design and implementation used by the N_Vector, SUNMatrix, and SUNLinear-
Solver modules. Currently two SUNNonlinearSolver implementations are provided, SUNNONLINSOL_NEWTON
and SUNNONLINSOL_FIXEDPOINT . These replicate the previous integrator specific implementations of a Newton
iteration and a fixed-point iteration (previously referred to as a functional iteration), respectively. Note the SUNNON-
LINSOL_FIXEDPOINT module can optionally utilize Anderson’s method to accelerate convergence. Example pro-
grams using each of these nonlinear solver modules in a standalone manner have been added and all IDA example
programs have been updated to use generic SUNNonlinearSolver modules.

By default IDA uses the SUNNONLINSOL_NEWTON module. Since IDA previously only used an internal implemen-
tation of a Newton iteration no changes are required to user programs and functions for setting the nonlinear solver op-
tions (e.g., IDASetMaxNonlinIters()) or getting nonlinear solver statistics (e.g., IDAGetNumNonlinSolvIters())
remain unchanged and internally call generic SUNNonlinearSolver functions as needed. While SUNDIALS includes
a fixed-point nonlinear solver module, it is not currently supported in IDA. For details on attaching a user-supplied
nonlinear solver to IDA see :numref:IDA.Usage.CC. Additionally, the example program idaRoberts_dns.c explic-
itly creates an attaches a SUNNONLINSOL _NEWTON object to demonstrate the process of creating and attaching a
nonlinear solver module (note this is not necessary in general as IDA uses the SUNNONLINSOL_NEWTON module
by default).

Three fused vector operations and seven vector array operations have been added to the N_Vector API. These op-
tional operations are disabled by default and may be activated by calling vector specific routines after creating an
N_Vector (see §6 for more details). The new operations are intended to increase data reuse in vector operations,
reduce parallel communication on distributed memory systems, and lower the number of kernel launches on sys-
tems with accelerators. The fused operations are N_VLinearCombination(), N_VScaleAddMulti(), and N_-
VDotProdMulti() and the vector array operations are N_VLinearCombinationVectorArray(), N_VScaleVec-
torArray(), N_VConstVectorArray(), N_ViirmsNormVectorArray (), N_ViirmsNormMaskVectorArray (), N_-
VScaleAddMultiVectorArray(), and N_VLinearCombinationVectorArray().

If an N_Vector implementation defines any of these operations as NULL, then standard N_Vector operations will
automatically be called as necessary to complete the computation.

Multiple updates to NVECTOR_CUDA were made:
* Changed N_VGetLength_Cuda() to return the global vector length instead of the local vector length.
e Added N_VGetLocalLength_Cuda() to return the local vector length.
¢ Added N_VGetMPIComm_Cuda() to return the MPI communicator used.
* Removed the accessor functions in the namespace suncudavec.

* Changed the N_VMake_Cuda () function to take a host data pointer and a device data pointer instead of an N_-
VectorContent_Cuda object.

* Added the ability to set the cudaStream_t used for execution of the NVECTOR_CUDA kernels. See the function
N_VSetCudaStreams_Cuda().

¢ Added N_VNewManaged_Cuda(), N_VMakeManaged_Cuda(), and N_VIsManagedMemory_Cuda() functions
to accommodate using managed memory with the NVECTOR_CUDA.

Multiple changes to NVECTOR_RAJA were made:
* Changed N_VGetLength_Raja() to return the global vector length instead of the local vector length.
e Added N_VGetLocalLength_Raja() to return the local vector length.
¢ Added N_VGetMPIComm_Raja() to return the MPI communicator used.
* Removed the accessor functions in the namespace suncudavec.

A new N_Vector implementation for leveraging OpenMP 4.5+ device offloading has been added, NVECTOR_OPEN-
MPDEYV . See §6.15 for more details.
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1.1.22 Changes in v3.2.1

The changes in this minor release include the following:

Fixed a bug in the CUDA N_Vector where the N_VInvTest () operation could write beyond the allocated vector
data.

Fixed library installation path for multiarch systems. This fix changes the default library installation path to
CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/1ib. Note CMAKE_IN-
STALL_LIBDIR is automatically set, but is available as a CMake option that can be modified.

1.1.23 Changes in v3.2.0

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that did not
define __STDC_VERSION__.

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when using a GPU system.
The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA N_Vector library to libsundials_nveccudaraja.lib from libsundials_-
nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA currently.

Several changes were made to the build system:

CMake 3.1.3 is now the minimum required CMake version.

Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the SUNDIALS_INDEX_SIZE
CMake option to select the sunindextype integer size.

The native CMake FindMPI module is now used to locate an MPI installation.

If MPI is enabled and MPI compiler wrappers are not set, the build system will check if CMAKE_<language>_-
COMPILER can compile MPI programs before trying to locate and use an MPI installation.

The previous options for setting MPI compiler wrappers and the executable for running MPI programs have
been have been depreated. The new options that align with those used in native CMake FindMPI module are
MPI_C_COMPILER, MPI_CXX_COMPILER, MPI_Fortran_COMPILER, and MPTEXEC_EXECUTABLE.

When a Fortran name-mangling scheme is needed (e.g., EVABLE_LAPACK is ON) the build system will infer the
scheme from the Fortran compiler. If a Fortran compiler is not available or the inferred or default scheme needs
to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES
can be used to manually set the name-mangling scheme and bypass trying to infer the scheme.

Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make the
CMake configuration file structure more modular.

1.1.24 Changes in v3.1.2

The changes in this minor release include the following:

Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared
libraries on OSX.

Fixed Windows specific problem where sunindextype was not correctly defined when using 64-bit integers for
the SUNDIALS index type. On Windows sunindextype is now defined as the MSVC basic type __int64.

Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.
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» Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types, and fixed a bug in
the full reinitialization approach where the sparse SUNMatrix pointer would go out of scope on some architec-
tures.

» Updated the SUNMatScaleAdd() and SUNMatScaleAddI () implementations in the sparse SUNMatrix module
to more optimally handle the case where the target matrix contained sufficient storage for the sum, but had the
wrong sparsity pattern. The sum now occurs in-place, by performing the sum backwards in the existing storage.
However, it is still more efficient if the user-supplied Jacobian routine allocates storage for the sum I + ~.J
manually (with zero entries if needed).

* Changed the LICENSE install path to instdir/include/sundials.

1.1.25 Changes in v3.1.1

The changes in this minor release include the following:

¢ Fixed a potential memory leak in the SUNLINSOL_SPGMR and SUNLINSOL_SPFGMR linear solvers: if “Ini-
tialize” was called multiple times then the solver memory was reallocated (without being freed).

¢ Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function to be used
(to avoid compiler warnings).

* Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).

* Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.
¢ Added missing #include <stdio.h>in N_Vector and SUNMatrix header files.

* Added missing prototype for IDASpilsGetNumJTSetupEvals().

* Fixed an indexing bug in the CUDA N_Vector implementation of N_ViirmsNormMask () and revised the RAJA
N_Vector implementation of N_ViirmsNormMask () to work with mask arrays using values other than zero or
one. Replaced double with realtype in the RAJA vector test functions.

* Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMatrix module (e.g.,
iterative linear solvers).

In addition to the changes above, minor corrections were also made to the example programs, build system, and user
documentation.

1.1.26 Changes in v3.1.0

Added N_Vector print functions that write vector data to a specified file (e.g., N_VPrintFile_Serial()).

Added make test and make test_install options to the build system for testing SUNDIALS after building with
make and installing with make install respectively.

1.1.27 Changes in v3.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs have been updated.
The goal of the redesign of these interfaces was to provide more encapsulation and to ease interfacing of custom linear
solvers and interoperability with linear solver libraries. Specific changes include:

* Added generic SUNMatrix module with three provided implementations: dense, banded, and sparse. These
replicate previous SUNDIALS DlIs and Sls matrix structures in a single object-oriented APIL.

* Added example problems demonstrating use of generic SUNMatrix modules.
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* Added generic SUNLinearSolver module with eleven provided implementations: SUNDIALS native dense,
SUNDIALS native banded, LAPACK dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPT-
FQMR, SPFGMR, and PCG. These replicate previous SUNDIALS generic linear solvers in a single object-
oriented APIL

¢ Added example problems demonstrating use of generic SUNLinearSolver modules.

» Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear solver
(Spils) interfaces to utilize generic SUNMatrix and SUNLinearSolver objects.

* Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU, ARKSPGMR)
since their functionality is entirely replicated by the generic DIs/Spils interfaces and SUNLinearSolver and
SUNMatrix modules. The exception is CVDIAG, a diagonal approximate Jacobian solver available to CVODE
and CVODES.

* Converted all SUNDIALS example problems and files to utilize the new generic SUNMatrix and SUNLinear-
Solver objects, along with updated Dls and Spils linear solver interfaces.

* Added Spils interface routines to ARKODE, CVODE, CVODES, IDA, and IDAS to allow specification of a user-
provided “JTSetup” routine. This change supports users who wish to set up data structures for the user-provided
Jacobian-times-vector (“JTimes”) routine, and where the cost of one JTSetup setup per Newton iteration can be
amortized between multiple JTimes calls.

Two additional N_Vector implementations were added — one for CUDA and one for RAJA vectors. These vectors are
supplied to provide very basic support for running on GPU architectures. Users are advised that these vectors both
move all data to the GPU device upon construction, and speedup will only be realized if the user also conducts the
right-hand-side or residual function evaluation on the device. In addition, these vectors assume the problem fits on one
GPU. For further information about RAJA, users are referred to the web site, https://software.llnl.gov/RAJA/. These
additions are accompanied by updates to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to be a 32- or 64-bit integer
data index type. sunindextype is defined to be int32_t or int64_t when portable types are supported, otherwise
it is defined as int or long int. The Fortran interfaces continue to use long int for indices, except for their sparse
matrix interface that now uses the new sunindextype. This new flexible capability for index types includes interfaces
to PETSc, hypre, SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been changed
to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use in For-
tran programs.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is a movement in scien-
tific software to provide a foundation for the rapid and efficient production of high-quality, sustainable extreme-scale
scientific applications. More information can be found at, https://xsdk.info.

Added functions SUNDIALSGetVersion() and SUNDIALSGetVersionNumber () to get SUNDIALS release version
information at runtime.

In addition, numerous changes were made to the build system. These include the addition of separate BLAS_ENABLE
and BLAS_LIBRARIES CMake variables, additional error checking during CMake configuration, minor bug fixes, and
renaming CMake options to enable/disable examples for greater clarity and an added option to enable/disable Fortran 77
examples. These changes included changing EXAMPLES_ENABLE to EXAMPLES_ENABLE_C, changing CXX_ENABLE to
EXAMPLES_ENABLE_CXX, changing F9®_ENABLE to EXAMPLES_ENABLE_F90, and adding an EXAMPLES_ENABLE_F77
option.

A bug fix was done to add a missing prototype for IDASetMaxBacksIC() in ida.h.
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Corrections and additions were made to the examples, to installation-related files, and to the user documentation.

1.1.28 Changes in v2.9.0

Two additional N_Vector implementations were added — one for Hypre (parallel) ParVector vectors, and one for PETSc
vectors. These additions are accompanied by additions to various interface functions and to user documentation.

Each N_Vector module now includes a function, N_VGetVectorID(), that returns the N_Vector module name.

An optional input function was added to set a maximum number of linesearch backtracks in the initial condition cal-
culation. Also, corrections were made to three Fortran interface functions.

For each linear solver, the various solver performance counters are now initialized to O in both the solver specifica-
tion function and in solver 1init function. This ensures that these solver counters are initialized upon linear solver
instantiation as well as at the beginning of the problem solution.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done to return integers
from linear solver and preconditioner “free” functions.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various additions and cor-
rections were made to the interfaces to the sparse solvers KLU and SuperLU_MT, including support for CSR format
when using KLU.

New examples were added for use of the OpenMP vector.

Minor corrections and additions were made to the IDA solver, to the Fortran interfaces, to the examples, to installation-
related files, and to the user documentation.

1.1.29 Changes in v2.8.0

Two major additions were made to the linear system solvers that are available for use with the IDA solver. First, in the
serial case, an interface to the sparse direct solver KLU was added. Second, an interface to SuperLU_MT, the multi-
threaded version of SuperLU, was added as a thread-parallel sparse direct solver option, to be used with the serial
version of the N_Vector module. As part of these additions, a sparse matrix (CSC format) structure was added to IDA.

Otherwise, only relatively minor modifications were made to IDA:

In IDARootfind (), a minor bug was corrected, where the input array rootdir was ignored, and a line was added to
break out of root-search loop if the initial interval size is below the tolerance ttol.

In IDALapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an illegal input
error for DGBTRF/DGBTRS.

A minor bug was fixed regarding the testing of the input tstop on the first call to IDASoIve().

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX, SQR, RAbs, RSqrt,
RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs, SUNRsqrt, SUNRexp, SRpowerlI,
and SUNRpowerR, respectively. These names occur in both the solver and in various example programs.

In the FIDA optional input routines FIDASETIIN, FIDASETRIN, and FIDASETVIN, the optional fourth argument key_-
length was removed, with hardcoded key string lengths passed to all strncmp tests.

In all FIDA examples, integer declarations were revised so that those which must match a C type long int are de-
clared INTEGER*8, and a comment was added about the type match. All other integer declarations are just INTEGER.
Corresponding minor corrections were made to the user guide.

Two new N_Vector modules have been added for thread-parallel computing environments — one for OpenMP, denoted
NVECTOR_OPENMP, and one for Pthreads, denoted NVECTOR_PTHREADS.
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With this version of SUNDIALS, support and documentation of the Autotools mode of installation is being dropped,
in favor of the CMake mode, which is considered more widely portable.

1.1.30 Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, bandwidth parameters,
related internal indices, pivot arrays, and the optional output 1sflag have all been changed from type int to type long
int, except for the problem size and bandwidths in user calls to routines specifying BLAS/LAPACK routines for the
dense/band linear solvers. The function NewIntArray is replaced by a pair NewIntArray and NewLintArray, for
int and long int arrays, respectively.

A large number of minor errors have been fixed. Among these are the following: After the solver memory is created,
it is set to zero before being filled. To be consistent with IDAS, IDA uses the function IDAGetDky for optional output
retrieval. In each linear solver interface function, the linear solver memory is freed on an error return, and the **Free
function now includes a line setting to NULL the main memory pointer to the linear solver memory. A memory leak
was fixed in two of the IDASp***Free functions. In the rootfinding functions IDARcheckl and IDARcheck2, when
an exact zero is found, the array glo of g values at the left endpoint is adjusted, instead of shifting the ¢ location t1lo
slightly. In the installation files, we modified the treatment of the macro SUNDIALS_USE_GENERIC_MATH, so that
the parameter GENERIC_MATH_LIB is either defined (with no value) or not defined.

1.1.31 Changes in v2.6.0

Two new features were added in this release: (a) a new linear solver module, based on BLAS and LAPACK for both
dense and banded matrices, and (b) option to specify which direction of zero-crossing is to be monitored while per-
forming rootfinding.

The user interface has been further refined. Some of the API changes involve: (a) a reorganization of all linear solver
modules into two families (besides the already present family of scaled preconditioned iterative linear solvers, the
direct solvers, including the new LAPACK-based ones, were also organized into a direct family); (b) maintaining a
single pointer to user data, optionally specified through a Set-type function; (c) a general streamlining of the band-
block-diagonal preconditioner module distributed with the solver.

1.1.32 Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire SUNDIALS source tree (see §3). At the user
interface level, the main impact is in the mechanism of including SUNDIALS header files which must now include the
relative path (e.g. #include <cvode/cvode.h>). Additional changes were made to the build system: all exported
header files are now installed in separate subdirectories of the installation include directory.

A bug was fixed in the internal difference-quotient dense and banded Jacobian approximations, related to the estimation
of the perturbation (which could have led to a failure of the linear solver when zero components with sufficiently small
absolute tolerances were present).

The user interface to the consistent initial conditions calculations was modified. The IDACalcIC() arguments t0,
yy0, and yp® were removed and a new function, IDAGetConsistentIC() is provided.

The functions in the generic dense linear solver (sundials_dense and sundials_smalldense) were modified to
work for rectangular m X n matrices (m < n), while the factorization and solution functions were renamed to
DenseGETRF / denGETRF and DenseGETRS / denGETRS, respectively. The factorization and solution functions
in the generic band linear solver were renamed BandGBTRF and BandGBTRS, respectively.
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1.1.33 Changes in v2.4.0

FIDA, a Fortran-C interface module, was added.

IDASPBCG and IDASPTFQMR modules have been added to interface with the Scaled Preconditioned Bi-CGstab
(SPBCG) and Scaled Preconditioned Transpose-Free Quasi-Minimal Residual (SPTFQMR) linear solver modules,
respectively (for details see :numref:IDA.Usage.CC). At the same time, function type names for Scaled Preconditioned
Iterative Linear Solvers were added for the user-supplied Jacobian-times-vector and preconditioner setup and solve
functions.

The rootfinding feature was added, whereby the roots of a set of given functions may be computed during the integration
of the DAE system.

A user-callable routine was added to access the estimated local error vector.
The deallocation functions now take as arguments the address of the respective memory block pointer.

To reduce the possibility of conflicts, the names of all header files have been changed by adding unique prefixes (ida_-
and sundials_). When using the default installation procedure, the header files are exported under various subdirec-
tories of the target include directory. For more details see Appendix §11.

1.1.34 Changes in v2.3.0

The user interface has been further refined. Several functions used for setting optional inputs were combined into a
single one. An optional user-supplied routine for setting the error weight vector was added. Additionally, to resolve
potential variable scope issues, all SUNDIALS solvers release user data right after its use. The build systems has been
further improved to make it more robust.

1.1.35 Changes in v2.2.2

Minor corrections and improvements were made to the build system. A new chapter in the User Guide was added —
with constants that appear in the user interface.

1.1.36 Changes in v2.2.1

The changes in this minor SUNDIALS release affect only the build system.

1.1.37 Changes in v2.2.0

The major changes from the previous version involve a redesign of the user interface across the entire SUNDIALS
suite. We have eliminated the mechanism of providing optional inputs and extracting optional statistics from the solver
through the iopt and ropt arrays. Instead, IDA now provides a set of routines (with prefix IDASet) to change the
default values for various quantities controlling the solver and a set of extraction routines (with prefix IDAGet) to extract
statistics after return from the main solver routine. Similarly, each linear solver module provides its own set of Set-
and Get-type routines. For more details see §5.5.12.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians and preconditioner in-
formation) were simplified by reducing the number of arguments. The same information that was previously accessible
through such arguments can now be obtained through Get-type functions.

Installation of IDA (and all of SUNDIALS) has been completely redesigned and is now based on configure scripts.
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1.2

Reading this User Guide

The structure of this document is as follows:

1.3

In Chapter §2, we give short descriptions of the numerical methods implemented by IDA for the solution of initial
value problems for systems of DAEs, along with short descriptions of preconditioning (§2.3) and rootfinding

(§2.4).

The following chapter describes the structure of the SUNDIALS suite of solvers (§3) and the software organiza-
tion of the IDA solver (§3.1).

Chapter §5 is the main usage document for IDA for C and C++ applications. It includes a complete description
of the user interface for the integration of DAE initial value problems. This is followed by documentation for
using IDA with Fortran applications and on GPU accelerated systems.

Chapter §6 gives a brief overview of the generic N_Vector module shared among the various components of
SUNDIALS, as well as details on the N_Vector implementations provided with SUNDIALS.

Chapter §7 gives a brief overview of the generic SUNMatrix module shared among the various components of
SUNDIALS, and details on the SUNMatrix implementations provided with SUNDIALS.

Chapter §8 gives a brief overview of the generic SUNLinearSolver module shared among the various compo-
nents of SUNDIALS. This chapter contains details on the SUNLinearSolver implementations provided with
SUNDIALS. The chapter also contains details on the SUNLinearSolver implementations provided with SUN-
DIALS that interface with external linear solver libraries.

Chapter §9 describes the SUNNonlinearSolver API and nonlinear solver implementations shared among the
various components of SUNDIALS.

Finally, in the appendices, we provide detailed instructions for the installation of IDA, within the structure of
SUNDIALS (Appendix §11), as well as a list of all the constants used for input to and output from IDA functions
(Appendix §12).

SUNDIALS License and Notices

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

Note:

If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, SuperLU_MT,

PETSc, or hypre), be sure to review the respective license of the package as that license may have more restrictive terms
than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked KLU, the build is
subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not the SUNDIALS
BSD license anymore.
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1.3.1 BSD 3-Clause License

Copyright (c) 2002-2022, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

¢ Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.3.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.
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1.3.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)
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Chapter 2

Mathematical Considerations

IDA solves the initial-value problem (IVP) for a DAE system of the general form

F(ta y7y) = Oa y(to) =Y, y(to) = yO (21)

where y, 7, and F are vectors in RY, ¢ is the independent variable, §y = dy/dt, and initial values o, 5o are given.
Often ¢t is time, but it certainly need not be.

2.1 Initial Condition

Prior to integrating a DAE initial-value problem, an important requirement is that the pair of vectors ¥, and g are both
initialized to satisfy the DAE residual F'(t¢, y0,90) = 0. For a class of problems that includes so-called semi-explicit
index-one systems, IDA provides a routine that computes consistent initial conditions from a user’s initial guess [18].
For this, the user must identify sub-vectors of y (not necessarily contiguous), denoted 34 and y, , which are its differential
and algebraic parts, respectively, such that ' depends on g4 but not on any components of y,. The assumption that
the system is “index one” means that for a given ¢ and yg, the system F'(¢,y, ) = O defines y, uniquely. In this case,
a solver within IDA computes y, and y4 at t = g, given y4 and an initial guess for y,. A second available option
with this solver also computes all of y (o) given y(to); this is intended mainly for quasi-steady-state problems, where
y(to) = 0 is given. In both cases, IDA solves the system F(tg, Yo, 9o) = O for the unknown components of g and 7o,
using a Newton iteration augmented with a line search globalization strategy. In doing this, it makes use of the existing
machinery that is to be used for solving the linear systems during the integration, in combination with certain tricks
involving the step size (which is set artificially for this calculation). For problems that do not fall into either of these
categories, the user is responsible for passing consistent values, or risks failure in the numerical integration.

2.2 IVP solution

The integration method used in IDA is the variable-order, variable-coefficient BDF (Backward Differentiation For-
mula), in fixed-leading-coefficient form [13]. The method order ranges from 1 to 5, with the BDF of order ¢ given by
the multistep formula

q
Z Qnp iYn—i = hnyn , (2.2)
=0

where y,, and g, are the computed approximations to y(t,,) and ¢(t,, ), respectively, and the step size is h,, = ¢, —t,—1.
The coefficients o, ; are uniquely determined by the order ¢, and the history of the step sizes. The application of the
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BDF (2.2) to the DAE system (2.1) results in a nonlinear algebraic system to be solved at each step:

q
G(yn) =F (tru Yn, h:Ll Zan,iyn—i> =0. (2.3)

=0

In the process of controlling errors at various levels, IDA uses a weighted root-mean-square norm, denoted || - ||wrms,
for all error-like quantities. The multiplicative weights used are based on the current solution and on the relative and
absolute tolerances input by the user, namely

1

= . 24
" rtol - |y;| + atol; 24

Because 1/, represents a tolerance in the component y;, a vector whose norm is 1 is regarded as “small.” For brevity,
we will usually drop the subscript WRMS on norms in what follows.

2.2.1 Nonlinear Solve

By default IDA solves (2.3) with a Newton iteration but IDA also allows for user-defined nonlinear solvers (see Chapter
§9). Each Newton iteration requires the solution of a linear system of the form

J[yn(m+1) - yn(m)] = 7G(yn(m)) s (2.5)
where Yy, (i) is the m-th approximation to y,,. Here J is some approximation to the system Jacobian

_9G _9F  OF

where o = v, 0/ hy,. The scalar o changes whenever the step size or method order changes.

For the solution of the linear systems within the Newton iteration, IDA provides several choices, including the option
of a user-supplied linear solver (see Chapter §8). The linear solvers distributed with SUNDIALS are organized in
two families, a direct family comprising direct linear solvers for dense, banded, or sparse matrices and a spils family
comprising scaled preconditioned iterative (Krylov) linear solvers. The methods offered through these modules are as
follows:

 dense direct solvers, including an internal implementation, an interface to BLAS/LAPACK, an interface to
MAGMA [50] and an interface to the oneMKL library [2],

* band direct solvers, including an internal implementation or an interface to BLAS/LAPACK,

* sparse direct solver interfaces to various libraries, including KLU [3, 24], SuperLU_MT [8, 26, 44], SuperLU_-
Dist [7, 32, 45, 46], and cuSPARSE [6],

* SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver with or without
restarts,

* SPFGMR, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method) solver with or
without restarts,

* SPBCQG, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,
* SPTFQMR, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method) solver, or
* PCQG, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator and a preconditioned
Krylov method yields a powerful tool because it combines established methods for stiff integration, nonlinear iteration,
and Krylov (linear) iteration with a problem-specific treatment of the dominant source of stiffness, in the form of the
user-supplied preconditioner matrix [16]. For the spils linear solvers with IDA, preconditioning is allowed only on the
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left (see §2.3). Note that the dense, band, and sparse direct linear solvers can only be used with serial and threaded
vector representations.

In the case of a matrix-based linear solver, the default Newton iteration is a Modified Newton iteration, in that the
Jacobian J is fixed (and usually out of date) throughout the nonlinear iterations, with a coefficient & in place of ain J.
However, in the case that a matrix-free iterative linear solver is used, the default Newton iteration is an Inexact Newton
iteration, in which J is applied in a matrix-free manner, with matrix-vector products Jov obtained by either difference
quotients or a user-supplied routine. In this case, the linear residual JAy + G is nonzero but controlled. With the
default Newton iteration, the matrix J and preconditioner matrix P are updated as infrequently as possible to balance
the high costs of matrix operations against other costs. Specifically, this matrix update occurs when:

e starting the problem,
* the value & at the last update is such that /& < 3/5 or ao/& > 5/3, or
» anon-fatal convergence failure occurred with an out-of-date J or P.

The above strategy balances the high cost of frequent matrix evaluations and preprocessing with the slow convergence
due to infrequent updates. To reduce storage costs on an update, Jacobian information is always reevaluated from
scratch.

The default stopping test for nonlinear solver iterations in IDA ensures that the iteration error ¥, — Yp(m) is small
relative to y itself. For this, we estimate the linear convergence rate at all iterations m > 1 as

5\ T
R‘(a) ’

where the 0, = Ypn(m) — Yn(m—1) is the correction at iteration m = 1,2, .... The nonlinear solver iteration is halted
if R > 0.9. The convergence test at the m-th iteration is then

S||6m|| < 0.33, 2.7

where S = R/(R — 1) whenever m > 1 and R < 0.9. The user has the option of changing the constant in the
convergence test from its default value of 0.33. The quantity S is set to S = 20 initially and whenever J or P is
updated, and it is reset to S = 100 on a step with o # @. Note that at m = 1, the convergence test (2.7) uses an
old value for S. Therefore, at the first nonlinear solver iteration, we make an additional test and stop the iteration if
[|61]] < 0.33-10~* (since such a d; is probably just noise and therefore not appropriate for use in evaluating R). We
allow only a small number (default value 4) of nonlinear iterations. If convergence fails with J or P current, we are
forced to reduce the step size h,,, and we replace h,, by h,nc¢ (by default s = 0.25). The integration is halted after a
preset number (default value 10) of convergence failures. Both the maximum number of allowable nonlinear iterations
and the maximum number of nonlinear convergence failures can be changed by the user from their default values.

When an iterative method is used to solve the linear system, to minimize the effect of linear iteration errors on the
nonlinear and local integration error controls, we require the preconditioned linear residual to be small relative to the
allowed error in the nonlinear iteration, i.e., || P~!(Jz + G)|| < 0.05 - 0.33. The safety factor 0.05 can be changed by
the user.

When the Jacobian is stored using either the SUNMATRIX _DENSE or SUNMATRIX_BAND matrix objects, the Jaco-
bian J defined in (2.6) can be either supplied by the user or IDA can compute .J internally by difference quotients. In
the latter case, we use the approximation

Jij = [Fi(t,y + 0je;,9 + aoje;) — Fi(t,y,y)]/o; , with
o; = VU max {|y;], |hi;|, 1/W,} sign(hg;) ,

where U is the unit roundoff, & is the current step size, and W is the error weight for the component y; defined by
(2.4). We note that with sparse and user-supplied matrix objects, the Jacobian must be supplied by a user routine.

In the case of an iterative linear solver, if a routine for Jv is not supplied, such products are approximated by

Ju = [F(t,y + ov,y +aov) = F(t,y,9)]/0,
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where the increment o = 1/||v||. As an option, the user can specify a constant factor that is inserted into this expression
for o.

2.2.2 Local Error Test

During the course of integrating the system, IDA computes an estimate of the local truncation error, LTE, at the n-th
time step, and requires this to satisfy the inequality

ILTE||wrms < 1.

Asymptotically, LTE varies as h9t! at step size h and order g, as does the predictor-corrector difference A,, = y,, —
Yn(0)- Thus there is a constant C' such that

LTE = CA,, + O(h%t?),

and so the norm of LTE is estimated as |C|- || A, ||. In addition, IDA requires that the error in the associated polynomial
interpolant over the current step be bounded by 1 in norm. The leading term of the norm of this error is bounded by
C'||A,|| for another constant C'. Thus the local error test in IDA is

max{|C|,C}|A,[ < 1. (2.8)

A user option is available by which the algebraic components of the error vector are omitted from the test (2.8), if these
have been so identified.

2.2.3 Step Size and Order Selection

In IDA, the local error test is tightly coupled with the logic for selecting the step size and order. First, there is an initial
phase that is treated specially; for the first few steps, the step size is doubled and the order raised (from its initial value
of 1) on every step, until (a) the local error test (2.8) fails, (b) the order is reduced (by the rules given below), or (c) the
order reaches 5 (the maximum). For step and order selection on the general step, IDA uses a different set of local error
estimates, based on the asymptotic behavior of the local error in the case of fixed step sizes. At each of the orders ¢’
equalto g, g — 1 (ifg > 1), ¢ — 2 (if ¢ > 2), or ¢ + 1 (if ¢ < 5), there are constants C'(¢’) such that the norm of the
local truncation error at order ¢’ satisfies

LTE(¢') = C(¢)|6(d' + D)l + O(h**?),

where ¢(k) is a modified divided difference of order & that is retained by IDA (and behaves asymptotically as h*).
Thus the local truncation errors are estimated as ELTE(¢') = C(¢')||¢#(¢’ + 1)|| to select step sizes. But the choice
of order in IDA is based on the requirement that the scaled derivative norms, ||hky(k) ||, are monotonically decreasing
with k, for k near ¢. These norms are again estimated using the ¢(k), and in fact

R 1y V|| ~ T(¢') = (¢’ + 1)ELTE(¢).

The step/order selection begins with a test for monotonicity that is made even before the local error test is performed.
Namely, the order isresetto ¢’ = ¢ —1if (a) g =2and T'(1) < T(2)/2,0r (b) ¢ > 2 and max{T(¢—1),T(¢—2)} <
T(q); otherwise ¢’ = q. Next the local error test (2.8) is performed, and if it fails, the step is redone at order ¢ « ¢’
and a new step size h’. The latter is based on the h9*! asymptotic behavior of ELTE(q), and, with safety factors, is
given by

n="h'/h =0.9/[2ELTE(q)]*/(4+1) |

The value of 7 is adjusted so that Nyin of < 7 < Now (by default Ny of = 0.25 and 1o = 0.9) before setting
h < k' = nh. If the local error test fails a second time, IDA uses 1) = 7min_ef, and on the third and subsequent failures
ituses ¢ = 1 and 7 = Npin_ef. After 10 failures, IDA returns with a give-up message.
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As soon as the local error test has passed, the step and order for the next step may be adjusted. No order change is made
if ¢ = g — 1 from the prior test, if ¢ = 5, or if ¢ was increased on the previous step. Otherwise, if the last ¢ + 1 steps
were taken at a constant order ¢ < 5 and a constant step size, IDA considers raising the order to ¢ 4+ 1. The logic is as
follows:

a. If g=1,thensetq=2if T'(2) < T(1)/2.
b. If ¢ > 1 then
ssetq«q—1ifT(qg—1) <min{T(q), T(q+ 1)}, else
e setq<« q+ 1ifT(¢+ 1) < T(q), otherwise
* leave ¢ unchanged, in thiscase T(¢ — 1) > T'(q) < T(¢+ 1)

In any case, the new step size i’ is set much as before:
n=h/h=1/]2ELTE(q)]/ @V

The value of 7 is adjusted such that
a. If Nmin_tx < 1 < Nmax_tx> set 7 = 1. The defaults are Nmin_x = 1 and Nmax_tx = 2.

b. If 7 > Nmax_tx, the step size growth is restricted to Nmax tx < N < Nmax With Nmax = 2 by default.

c. If 7 < Mmin_gx, the step size reduction is restricted to Nyin < 7 < Mow With Ny = 0.5 and 76w = 0.9 by
default.

Thus we do not increase the step size unless it can be doubled. If a step size reduction is called for, the step size will
be cut by at least 10% and up to 50% for the next step. See [13] for details.

Finally h is set to b’ = nh and |h| is restricted t0 Amin < |h| < hmax With the defaults i, = 0.0 and hpyx = oo.

Normally, IDA takes steps until a user-defined output value ¢ = ¢,y is overtaken, and then computes y(to,) by inter-
polation. However, a “one step” mode option is available, where control returns to the calling program after each step.
There are also options to force IDA not to integrate past a given stopping point £ = Zqp.

2.2.4 Inequality Constraints

IDA permits the user to impose optional inequality constraints on individual components of the solution vector y. Any
of the following four constraints can be imposed: y; > 0, y; < 0, y; > 0, or y; < 0. The constraint satisfaction
is tested after a successful nonlinear system solution. If any constraint fails, we declare a convergence failure of the
nonlinear iteration and reduce the step size. Rather than cutting the step size by some arbitrary factor, IDA estimates a
new step size h’ using a linear approximation of the components in y that failed the constraint test (including a safety
factor of 0.9 to cover the strict inequality case). These additional constraints are also imposed during the calculation of
consistent initial conditions. If a step fails to satisfy the constraints repeatedly within a step attempt then the integration
is halted and an error is returned. In this case the user may need to employ other strategies as discussed in §5.5.2 to
satisfy the inequality constraints.

2.3 Preconditioning

When using a nonlinear solver that requires the solution of a linear system of the form JAy = —G (e.g., the default
Newton iteration), IDA makes repeated use of a linear solver. If this linear system solve is done with one of the scaled
preconditioned iterative linear solvers supplied with SUNDIALS, these solvers are rarely successful if used without
preconditioning; it is generally necessary to precondition the system in order to obtain acceptable efficiency. A system
Ax = b can be preconditioned on the left, on the right, or on both sides. The Krylov method is then applied to a system
with the matrix P~ A4, or AP~!, or P; ' APy, instead of A. However, within IDA, preconditioning is allowed only
on the left, so that the iterative method is applied to systems (P~1J)Ay = —P~1G. Left preconditioning is required
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to make the norm of the linear residual in the nonlinear iteration meaningful; in general, || JAy + G|| is meaningless,
since the weights used in the WRMS-norm correspond to y.

In order to improve the convergence of the Krylov iteration, the preconditioner matrix P should in some sense ap-
proximate the system matrix A. Yet at the same time, in order to be cost-effective, the matrix P should be reasonably
efficient to evaluate and solve. Finding a good point in this tradeoff between rapid convergence and low cost can be very
difficult. Good choices are often problem-dependent (for example, see [16] for an extensive study of preconditioners
for reaction-transport systems).

Typical preconditioners used with IDA are based on approximations to the iteration matrix of the systems involved; in
oF OF

other words, P ~ m + a?, where « is a scalar inversely proportional to the integration step size h. Because the
Y Y

Krylov iteration occurs within a nonlinear solver iteration and further also within a time integration, and since each of

these iterations has its own test for convergence, the preconditioner may use a very crude approximation, as long as it

captures the dominant numerical feature(s) of the system. We have found that the combination of a preconditioner with

the Newton-Krylov iteration, using even a fairly poor approximation to the Jacobian, can be surprisingly superior to

using the same matrix without Krylov acceleration (i.e., a modified Newton iteration), as well as to using the Newton-

Krylov method with no preconditioning.

2.4 Rootfinding

The IDA solver has been augmented to include a rootfinding feature. This means that, while integratnuming the Initial
Value Problem (2.1), IDA can also find the roots of a set of user-defined functions g;(¢,y, ¢) that depend on ¢, the
solution vector y = y(t), and its t—derivative ¢(¢). The number of these root functions is arbitrary, and if more than
one g; is found to have a root in any given interval, the various root locations are found and reported in the order that
they occur on the ¢ axis, in the direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of
gi(t,y(t),y(t)), denoted g;(t) for short. If a user root function has a root of even multiplicity (no sign change), it
will probably be missed by IDA. If such a root is desired, the user should reformulate the root function so that it
changes sign at the desired root.

The basic scheme used is to check for sign changes of any g;(t) over each time step taken, and then (when a sign change
is found) to home in on the root (or roots) with a modified secant method [34]. In addition, each time ¢ is computed,
IDA checks to see if g;(t) = 0 exactly, and if so it reports this as a root. However, if an exact zero of any g; is found
at a point ¢, IDA computes ¢ at ¢t + J for a small increment 6, slightly further in the direction of integration, and if any
gi(t + 0) = 0 also, IDA stops and reports an error. This way, each time IDA takes a time step, it is guaranteed that the
values of all g; are nonzero at some past value of ¢, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, IDA has an
interval (¢;,, tp;] in which roots of the g;(¢) are to be sought, such that ¢; is further ahead in the direction of integration,
and all g;(t;,) # 0. The endpoint ¢,; is either ¢,,, the end of the time step last taken, or the next requested output time
tout if this comes sooner. The endpoint ¢, is either ¢,,_1, or the last output time ¢,y (if this occurred within the last
step), or the last root location (if a root was just located within this step), possibly adjusted slightly toward ¢,, if an exact
zero was found. The algorithm checks g at ¢5,; for zeros and for sign changes in (¢;,, ty;). If no sign changes are found,
then either a root is reported (if some g;(t;) = 0) or we proceed to the next time interval (starting at ¢5,;). If one or
more sign changes were found, then a loop is entered to locate the root to within a rather tight tolerance, given by

7 =100 U * (|t,| + |h]) (U = unit roundof) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur first
is the one with the largest value of |g; (¢r:)|/]9:(tni) — 9i(ti0)], corresponding to the closest to ¢, of the secant method
values. At each pass through the loop, a new value ¢,,;4 is set, strictly within the search interval, and the values of
gi(tmiq) are checked. Then either t;, or tp; is reset to t,,;4 according to which subinterval is found to have the sign
change. If there is none in (¢;,, t,niq) but some g;(tmiq) = 0, then that root is reported. The loop continues until
|thi — tio| < 7, and then the reported root location is ¢p,;.

30 Chapter 2. Mathematical Considerations



User Documentation for IDA, v6.4.1

In the loop to locate the root of g;(t), the formula for ¢,,;4 is
tmid = thi — (thi — t10)9i(thi)/[9i(thi) — agi(tio)] ,

where o a weight parameter. On the first two passes through the loop, « is set to 1, making ¢,,,;4 the secant method
value. Thereafter, « is reset according to the side of the subinterval (low vs high, i.e. toward ¢;, vs toward ¢,;) in which
the sign change was found in the previous two passes. If the two sides were opposite, « is set to 1. If the two sides were
the same, « is halved (if on the low side) or doubled (if on the high side). The value of ¢,,,;4 is closer to ¢;, when o < 1
and closer to ¢,; when @ > 1. If the above value of ¢,,;4 is within 7/2 of ¢;, or tp;, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between 0.1 and 0.5 (0.5 being the midpoint), and
the actual distance from the endpoint is at least 7/2.
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Chapter 3

Code Organization

SUNDIALS consists of the solvers CVODE and ARKODE for ordinary differential equation (ODE) systems, IDA
for differential-algebraic (DAE) systems, and KINSOL for nonlinear algebraic systems. In addition, SUNDIALS also
includes variants of CVODE and IDA with sensitivity analysis capabilities (using either forward or adjoint methods),
called CVODES and IDAS, respectively. The following is a list summarizes the basic functionality of each SUNDIALS
package:

* CVODE, a solver for stiff and nonstiff ODE systems § = f(t, y) based on Adams and BDF methods;

CVODES, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

» ARKODE, a solver for stiff, nonstiff, mixed stiff-nonstiff, and multirate ODE systems M (t) y = f1(¢,y)+ f2(t,y)
based on Runge-Kutta methods;

* IDA, a solver for differential-algebraic systems F'(¢,y,y) = 0 based on BDF methods;
* IDAS, a solver for differential-algebraic systems with sensitivity analysis capabilities;
* KINSOL, a solver for nonlinear algebraic systems F'(u) = 0.

The various packages in the suite share many common components and are organized as a family. Fig. 3.1 gives a high-
level overview of solver packages, the shared vector, matrix, linear solver, and nonlinear solver interfaces (abstract base
classes), and the corresponding class implementations provided with SUNDIALS. For classes that provide interfaces
to third-party libraries (i.e., LAPACK, KLU, SuperLU_MT, SuperLU_DIST, hypre, PETSc, Trilinos, and Raja) users
will need to download and compile those packages independently of SUNDIALS. The directory structure is shown in
Fig. 3.2.

3.1 IDA organization

The IDA package is written in ANSI C. The following summarizes the basic structure of the package, although knowl-
edge of this structure is not necessary for its use.

The overall organization of the IDA package is shown in Fig. 3.3. IDA utilizes generic linear and nonlinear solvers
defined by the SUNLinearSolver (see §8) and SUNNonlinearSolver interfaces (see §9) respectively. As such, IDA
has no knowledge of the method being used to solve the linear and nonlinear systems that arise. For any given user
problem, there exists a single nonlinear solver interface and, if necessary, one of the linear system solver interfaces is
specified, and invoked as needed during the integration.

IDA has a single unified linear solver interface, IDALS, supporting both direct and iterative linear solvers built using
the generic SUNLinearSolver interface (see §8). These solvers may utilize a SUNMatrix object (see §7) for storing

33



User Documentation for IDA, v6.4.1
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Fig. 3.1: High-level diagram of the SUNDIALS suite.
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Fig. 3.2: Directory structure of the SUNDIALS source tree.
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Fig. 3.3: Overall structure diagram of the IDA package. Components specific to IDA begin with “IDA” (IDALS,
IDANLS, and IDABBDPRE), all other items correspond to generic SUNDIALS vector, matrix, and solver interfaces.
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Jacobian information, or they may be matrix-free. Since IDA can operate on any valid SUNLinearSolver, the set of
linear solver modules available to IDA will expand as new SUNLinearSolver implementations are developed.

For users employing SUNMATRIX_DENSE or SUNMATRIX_BAND Jacobian matrices, IDA includes algorithms for
their approximation through difference quotients, although the user also has the option of supplying a routine to compute
the Jacobian (or an approximation to it) directly. This user-supplied routine is required when using sparse or user-
supplied Jacobian matrices.

For users employing matrix-free iterative linear solvers, IDA includes an algorithm for the approximation by difference
quotients of the product Jv. Again, the user has the option of providing routines for this operation, in two phases: setup
(preprocessing of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again in two phases: setup and
solve. While there is no default choice of preconditioner analogous to the difference-quotient approximation in the
direct case, the references [16, 20], together with the example and demonstration programs included with IDA, offer
considerable assistance in building preconditioners.

IDA’s linear solver interface consists of four primary phases, devoted to (1) memory allocation and initialization, (2)
setup of the matrix data involved, (3) solution of the system, and (4) freeing of memory. The setup and solution phases
are separate because the evaluation of Jacobians and preconditioners is done only periodically during the integration,
and only as required to achieve convergence. The call list within the central IDA module to each of the four associated
functions is fixed, thus allowing the central module to be completely independent of the linear system method.

IDA also provides a preconditioner module, for use with any of the Krylov iterative linear solvers. It works in conjunc-
tion with the NVECTOR_PARALLEL and generates a preconditioner that is a block-diagonal matrix with each block
being a banded matrix.

All state information used by IDA to solve a given problem is stored in N_Vector instances. There is no global data
in the IDA package, and so, in this respect, it is reentrant. State information specific to the linear and nonlinear solver
are saved in the SUNLinearSolver and SUNNonlinearSolver instances respectively. The reentrancy of IDA enables
the setting where two or more problems are solved by intermixed or parallel calls to different instances of the package
from within a single user program.
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Using SUNDIALS

As discussed in §3, the six solvers packages (CVODE(S), IDA(S), ARKODE, KINSOL) that make up SUNDIALS
are built upon common classes/modules for vectors, matrices, and algebraic solvers. In addition, the six packages all
leverage some other common infrastructure, which we discuss in this section.

4.1 The SUNContext Type

New in version 6.0.0.

All of the SUNDIALS objects (vectors, linear and nonlinear solvers, matrices, etc.) that collectively form a SUNDIALS
simulation, hold a reference to a common simulation context object defined by the SUNContext class.

The SUNContext class/type is defined in the header file sundials/sundials_context.h as

typedef struct _SUNContext *SUNContext

Users should create a SUNContext object prior to any other calls to SUNDIALS library functions by calling:

int SUNContext_Create (void *comm, SUNContext *ctx)

Creates a SUNContext object associated with the thread of execution. The data of the SUNContext class is
private.

Arguments:

e comm — a pointer to the MPI communicator or NULL if not using MPI.

* ctx — [in,out] upon successful exit, a pointer to the newly created SUNContext object.
Returns:

e Will return < 0O if an error occurs, and zero otherwise.

The created SUNContext object should be provided to the constructor routines for different SUNDIALS
classes/modules e.g.,

SUNContext sunctx;
void* package_mem;
N_Vector x;

SUNContext_Create(NULL, &sunctx);

(continues on next page)
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(continued from previous page)

package_mem = CVodeCreate(..., sunctx);
package_mem = IDACreate(..., sunctx);
package_mem = KINCreate(..., sunctx);
package_mem = ARKStepCreate(..., sunctx);
X = N_VNew_<SomeVector>(..., sunctx);

After all other SUNDIALS code, the SUNContext object should be freed with a call to:

int SUNContext_Free(SUNContext *ctx)
Frees the SUNContext object.

Arguments:
e ctx — pointer to a valid SUNContext object, NULL upon successful return.
Returns:

¢ Will return < O if an error occurs, and zero otherwise.

Warning: When MPI is being used, the SUNContext_Free () must be called prior to MPI_Finalize.

The SUNContext API further consists of the following functions:

int SUNContext_GetProfiler (SUNContext ctx, SUNProfiler *profiler)
Gets the SUNProfiler object associated with the SUNContext object.

Arguments:
e ctx —avalid SUNContext object.

» profiler — [in,out] a pointer to the SUNProfiler object associated with this context; will be NULL
if profiling is not enabled.

Returns:
¢ Will return < O if an error occurs, and zero otherwise.

int SUNContext_SetProfiler (SUNContext ctx, SUNProfiler profiler)
Sets the SUNProfiler object associated with the SUNContext object.

Arguments:
* ctx —avalid SUNContext object.

* profiler — a SUNProfiler object to associate with this context; this is ignored if profiling is not
enabled.

Returns:
e Will return < O if an error occurs, and zero otherwise.

int SUNContext_SetLogger (SUNContext ctx, SUNLogger logger)
Sets the SUNLogger object associated with the SUNContext object.

Arguments:
e ctx —avalid SUNContext object.

* logger —a SUNLogger object to associate with this context; this is ignored if profiling is not enabled.
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Returns:
e Will return < O if an error occurs, and zero otherwise.
New in version 6.2.0.

int SUNContext_GetLogger (SUNContext ctx, SUNLogger *logger)
Gets the SUNLogger object associated with the SUNContext object.

Arguments:
e ctx —a valid SUNContext object.

* logger — [in,out] a pointer to the SUNLogger object associated with this context; will be NULL if
profiling is not enabled.

Returns:
e Will return < O if an error occurs, and zero otherwise.

New in version 6.2.0.

4.1.1 Implications for task-based programming and multi-threading

Applications that need to have concurrently initialized SUNDIALS simulations need to take care to understand the
following:

#. A SUNContext object must only be associated with one SUNDIALS simulation (a solver object and its associated
vectors etc.) at a time.

¢ Concurrently initialized is not the same as concurrently executing. Even if two SUNDIALS simulations execute
sequentially, if both are initialized at the same time with the same SUNContext, behavior is undefined.

e Ttis OK to reuse a SUNContext object with another SUNDIALS simulation after the first simulation has com-
pleted and all of the simulation’s associated objects (vectors, matrices, algebraic solvers, etc.) have been de-
stroyed.

#. The creation and destruction of a SUNContext object is cheap, especially in comparison to the cost of creat-
ing/destroying a SUNDIALS solver object.

The following (incomplete) code examples demonstrate these points using CVODE as the example SUNDIALS pack-
age.

SUNContext sunctxs[num_threads];
int cvode_initialized[num_threads];
void* cvode_mem[num_threads];

// Create

for (int i = 0; i < num_threads; i++) {
sunctxs[i] = SUNContext_Create(...);
cvode_mem[i] = CVodeCreate(..., sunctxs[i]);
cvode_initialized[i] = 0; // not yet initialized
// set optional cvode inputs...

}

// Solve

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;

(continues on next page)
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(continued from previous page)

int tid = omp_get_thread_num();
if (!cvode_initialized[tid]) {

retval = CVodeInit(cvode_mem[tid], ...);
cvode_initialized[tid] = 1;
} else {
retval = CVodeReInit(cvode_mem[tid], ...);
}
CVode(cvode_mem[i], ...);
}
// Destroy

for (int i = 0; i < num_threads; i++) {
// get optional cvode outputs...
CVodeFree (&cvode_mem[i]);
SUNContext_Free(&sunctxs[i]);

Since each thread has its own unique CVODE and SUNContext object pair, there should be no thread-safety issues.
Users should be sure that you apply the same idea to the other SUNDIALS objects needed as well (e.g. an N_Vector).

The variation of the above code example demonstrates another possible approach:

// Create, Solve, Destroy

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;
void* cvode_mem;
SUNContext sunctx;

sunctx = SUNContext_Create(...);
cvode_mem = CVodeCreate(..., sunctx);
retval = CVodeInit(cvode_mem, ...);
// set optional cvode inputs...
CVode(cvode_mem, ...);

// get optional cvode outputs...

CVodeFree (&cvode_mem) ;
SUNContext_Free(&sunctx);
}

So long as the overhead of creating/destroying the CVODE object is small compared to the cost of solving the ODE,
this approach is a fine alternative to the first approach since SUNContext_Create() and SUNContext_Free() are
much cheaper than the CVODE create/free routines.
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4.1.2 Convenience class for C++ Users

For C++ users a RAII safe class, sundials: :Context, is provided:

namespace sundials {

class Context : public sundials::ConvertibleTo<SUNContext>

{

public:

explicit Context(void* comm = nullptr)

{
sunctx_ = std::make_unique<SUNContext>();
SUNContext_Create(comm, sunctx_.get());

1

/* disallow copy, but allow move construction */
Context(const Context&) = delete;
Context (Context&&) = default;

/% disallow copy, but allow move operators */
Context& operator=(const Context&) = delete;

Context& operator=(Context&&) = default;

SUNContext Convert() override

{
return “sunctx_.get();
}
SUNContext Convert() const override
{
return “sunctx_.get();
}
operator SUNContext() override
{
return “sunctx_.get();
}
operator SUNContext() const override
{
return “sunctx_.get();
3
~Context()
{
if (sunctx_) SUNContext_Free(sunctx_.get());
}
private:
std: :unique_ptr<SUNContext> sunctx_;
3

} // namespace sundials

4.1. The SUNContext Type
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4.2 SUNDIALS Status Logging

New in version 6.2.0.

SUNDIALS includes a built-in logging functionality which can be used to direct error messages, warning messages,
informational output, and debugging output to specified files. This capability requires enabling both build-time and
run-time options to ensure the best possible performance is achieved.

4.2.1 Enabling Logging

To enable logging, the CMake option SUNDIALS_LOGGING_LEVEL must be set to a value greater than ® when con-
figuring SUNDIALS. This option specifies the maximum desired output level. See the documentation entry for SUN-
DIALS_LOGGING_LEVEL for the numeric values correspond to errors, warnings, info output, and debug output where
errors < warnings < info output < debug output < extra debug output. If it is desired that the logger is MPI-aware, then
the option SUNDIALS_LOGGING_ENABLE_MPI is set to TRUE. More details in regards to configuring SUNDIALS with
CMake can be found in §11.

When SUNDIALS is built with logging enabled, then the default logger (stored in the SUNContext object) may be
configured through environment variables without any changes to user code. The available environment variables are:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

These environment variables may be set to a filename string. There are two special filenames: stdout and stderr.
These two filenames will result in output going to the standard output file and standard error file. The different variables
may all be set to the same file, or to distinct files, or some combination there of. To disable output for one of the streams,
then do not set the environment variable, or set it to an empty string.

Warning: A non-default logger should be created prior to any other SUNDIALS calls in order to capture all log
events.

Note: If SUNDIALS_LOGGING_LEVEL was set to 1 (corresponding to error-level output) at build-time, then setting the
environment variable SUNLOGGER_INFO_FILENAME will do nothing.

Note: Extra debugging output is turned on by setting SUNDIALS_LOGGING_LEVEL to 5. This extra output includes
vector-values (so long as the N_Vector used supports printing).
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4.2.2 Logger API

The central piece of the Logger API is the SUNLogger type:
typedef struct SUNLogger_ *SUNLogger

When SUNDIALS is built with logging enabled, a default logging object is stored in the SUNContext object and can
be accessed with a call to SUNContext_GetLogger ().

The enumerated type SUNLogLevel is used by some of the logging functions to identify the output level or file.

enum SUNLogLevel
The SUNDIALS logging level

enumerator SUN_LOGLEVEL_ALL

Represents all output levels

enumerator SUN_LOGLEVEL_NONE

Represents none of the output levels

enumerator SUN_LOGLEVEL_ERROR

Represents error-level logging messages

enumerator SUN_LOGLEVEL_WARNING

Represents warning-level logging messages

enumerator SUN_LOGLEVEL_INFO

Represents info-level logging messages

enumerator SUN_LOGLEVEL_DEBUG

Represents deubg-level logging messages
The SUNLogger class provides the following methods.

int SUNLogger_Create (void *comm, int output_rank, SUNLogger *logger)
Creates a new SUNLogger object.

Arguments:
e comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL.
* output_rank — the MPI rank used for output (can be -1 to print to all ranks).

* logger - [in,out] On input this is a pointer to a
SUNLogger, on output it will point to a new SUNLogger instance.

Returns:
e Returns zero if successful, or non-zero if an error occurred.
int SUNLogger_CreateFromEnv (void *comm, SUNLogger *logger)

Creates a new SUNLogger object and opens the output streams/files from the environment variables:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

Arguments:

* comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL.

4.2. SUNDIALS Status Logging 43



User Documentation for IDA, v6.4.1

¢ logger - [in,out] On input this is a pointer to a
SUNLogger, on output it will point to a new SUNLogger instance.

Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetErrorFilename (SUNLogger logger, const char *error_filename)

Sets the filename for error output.
Arguments:

* logger —a SUNLogger object.

e error_filename — the name of the file to use for error output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetWarningFilename (SUNLogger logger, const char *warning_filename)

Sets the filename for warning output.
Arguments:

* logger — a SUNLogger object.

* warning_filename — the name of the file to use for warning output.
Returns:

* Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetInfoFilename (SUNLogger logger, const char *info_filename)

Sets the filename for info output.
Arguments:

* logger —a SUNLogger object.

* info_filename — the name of the file to use for info output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetDebugFilename (SUNLogger logger, const char *debug_filename)
Sets the filename for debug output.

Arguments:

* logger — a SUNLogger object.

* debug_filename — the name of the file to use for debug output.
Returns:

e Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_QueueMsg (SUNLogger logger, SUNLogLevel 1vl, const char *scope, const char *label, const char
*msg_txt, ...)

Queues a message to the output log level.
Arguments:

* logger —a SUNLogger object.
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e 1vl — the message log level (i.e. error, warning, info, debug).
* scope — the message scope (e.g. the function name).
* label - the message label.
* msg_txt — the message text itself.
e ... —the format string arguments
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

Warning: When compiling for ANSI C / C89 / C90 (and without compiler extensions), it is dangerous to
pass any user input to this function because it falls back to using sprintf with a fixed buffer size.

It is highly recommended to compile with C99 or newer if your compiler does not support snprintf through
extensions.

int SUNLogger_Flush(SUNLogger logger, SUNLogLevel 1v1)

Flush the message queue(s).
Arguments:

* logger —a SUNLogger object.

e 1v1 - the message log level (i.e. error, warning, info, debug or all).
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_GetOutputRank (SUNLogger logger, int *output_rank)
Get the output MPI rank for the logger.

Arguments:
* logger —a SUNLogger object.

e output_rank — [in,out] On input this is a pointer to an int, on output it points to the int holding the
output rank.

Returns:
e Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_Destroy (SUNLogger *logger)
Free the memory for the SUNLogger object.

Arguments:
* logger — a pointer to the SUNLogger object.
Returns:

¢ Returns zero if successful, or non-zero if an error occur.
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4.2.3 Example Usage

As previously mentioned, if it is enabled at build time, there is a default SUNLogger attached to a SUNContext instance
when it is created. This logger can be configured using the environment variables, e.g.,

SUNDIALS_INFO_FILENAME=stdout ./examples/cvode/serial/cvKrylovDemo_1ls

SUNDIALS also includes several example codes that demonstrate how to use the logging interface via the C APIL.

examples/arkode/CXX_serial/ark_analytic_sys.cpp
examples/cvode/serial/cvAdvDiff_bnd.c
examples/cvode/parallel/cvAdvDiff diag_p.c
examples/kinsol/CXX_parallel/kin_em_p.cpp
examples/kinsol/CUDA_mpi/kin_em_mpicuda.cpp

4.3 Performance Profiling

New in version 6.0.0.

SUNDIALS includes a lightweight performance profiling layer that can be enabled at compile-time. Optionally, this
profiling layer can leverage Caliper [12] for more advanced instrumentation and profiling. By default, only SUNDIALS
library code is profiled. However, a public profiling API can be utilized to leverage the SUNDIALS profiler to time
user code regions as well (see §4.3.2).

4.3.1 Enabling Profiling

To enable profiling, SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_PROFILING set to
ON. To utilize Caliper support, the CMake option ENABLE_CALIPER must also be set to ON. More details in regards to
configuring SUNDIALS with CMake can be found in §11.

When SUNDIALS is built with profiling enabled and without Caliper, then the environment variable SUNPROFILER_-
PRINT can be utilized to enable/disable the printing of profiler information. Setting SUNPROFILER_PRINT=1 will cause
the profiling information to be printed to stdout when the SUNDIALS simulation context is freed. Setting SUNPRO-
FILER_PRINT=0 will result in no profiling information being printed unless the SUNProfiler_Print () function is
called explicitly. By default, SUNPROFILER_PRINT is assumed to be 8. SUNPROFILER_PRINT can also be set to a file
path where the output should be printed.

If Caliper is enabled, then users should refer to the Caliper documentation for information on getting profiler output.
In most cases, this involves setting the CALI_CONFIG environment variable.

Warning: While the SUNDIALS profiling scheme is relatively lightweight, enabling profiling can still negatively
impact performance. As such, it is recommended that profiling is enabled judiciously.
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4.3.2 Profiler API

The primary way of interacting with the SUNDIALS profiler is through the following macros:

SUNDIALS_MARK_FUNCTION_BEGIN(profobj)
SUNDIALS_MARK_FUNCTION_END (profobj)
SUNDIALS_WRAP_STATEMENT (profobj, name, stmt)
SUNDIALS_MARK_BEGIN(profobj, name)
SUNDTIALS_MARK_END (profobj, name)

Additionally, in C++ applications, the follow macro is available:

SUNDIALS_CXX_MARK_FUNCTION (profobj)

These macros can be used to time specific functions or code regions. When using the *_BEGIN macros, it is important
that a matching *_END macro is placed at all exit points for the scope/function. The SUNDIALS_CXX_MARK_FUNCTION
macro only needs to be placed at the beginning of a function, and leverages RAII to implicitly end the region.

The profobj argument to the macro should be a SUNProfiler object, i.e. an instance of the struct

typedef struct _SUNProfiler *SUNProfiler

When SUNDIALS is built with profiling, a default profiling object is stored in the SUNContext object and can be
accessed with a call to SUNContext_GetProfiler().

The name argument should be a unique string indicating the name of the region/function. It is important that the name
given to the *_BEGIN macros matches the name given to the *_END macros.

In addition to the macros, the following methods of the SUNProfiler class are available.

int SUNProfiler_Create(void *comm, const char *title, SUNProfiler *p)
Creates a new SUNProfiler object.

Arguments:
e comm — a pointer to the MPI communicator if MPI is enabled, otherwise can be NULL
* title — atitle or description of the profiler

* p—[in,out] On input this is a pointer to a SUNProfiler, on output it will point to a new SUNProfiler
instance

Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Free (SUNProfiler *p)
Frees a SUNProfiler object.

Arguments:

* p — [in,out] On input this is a pointer to a SUNProfiler, on output it will be NULL
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Begin(SUNProfiler p, const char *name)
Starts timing the region indicated by the name.

Arguments:

* p—a SUNProfiler object
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* name — a name for the profiling region
Returns:
e Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_End (SUNProfiler p, const char *name)
Ends the timing of a region indicated by the name.

Arguments:
* p—a SUNProfiler object
* name — a name for the profiling region
Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Print (SUNProfiler p, FILE *fp)

Prints out a profiling summary. When constructed with an MPI comm the summary will include the average and
maximum time per rank (in seconds) spent in each marked up region.

Arguments:
* p—a SUNProfiler object
 fp — the file handler to print to
Returns:
e Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Reset (SUNProfiler p)

Resets the region timings and counters to zero.
Arguments:

e p—a SUNProfiler object
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

4.3.3 Example Usage

The following is an excerpt from the CVODE example code examples/cvode/serial/cvAdvDiff_bnd.c. It is
applicable to any of the SUNDIALS solver packages.

SUNContext ctx;
SUNProfiler profobj;

/* Create the SUNDIALS context */
retval = SUNContext_Create(NULL, &ctx);

/* Get a reference to the profiler */
retval = SUNContext_GetProfiler(ctx, &profobj);

VA

SUNDIALS_MARK_BEGIN(profobj, "Integration loop");

(continues on next page)
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(continued from previous page)

umax = N_VMaxNorm(uw);

PrintHeader(reltol, abstol, umax);

for(iout=1, tout=T1l; iout <= NOUT; iout++, tout += DTOUT) {
retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
umax = N_VMaxNorm(u);
retval = CVodeGetNumSteps(cvode_mem, &nst);
PrintOutput(t, umax, nst);

}
SUNDIALS_MARK_END(profobj, "Integration loop");
PrintFinalStats(cvode_mem); /* Print some final statistics &

4.3.4 Other Considerations

If many regions are being timed, it may be necessary to increase the maximum number of profiler entries (the default
is 2560). This can be done by setting the environment variable SUNPROFILER_MAX_ENTRIES.

4.4 SUNDIALS Version Information

SUNDIALS provides additional utilities to all packages, that may be used to retrieve SUNDIALS version information
at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:
* version — character array to hold the SUNDIALS version information.
¢ len — allocated length of the version character array.
Return value:
* 0 if successful
* -1 if the input string is too short to store the SUNDIALS version

Notes:
An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber (int *major, int *minor, int *patch, char *label, int len)

This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:
* major — SUNDIALS release major version number.
» minor — SUNDIALS release minor version number.
* patch — SUNDIALS release patch version number.
¢ label — string to hold the SUNDIALS release label.
¢ [en — allocated length of the label character array.
Return value:

e 0 if successful
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* -1 if the input string is too short to store the SUNDIALS label

Notes:
An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

4.5 SUNDIALS Fortran Interface

SUNDIALS provides modern, Fortran 2003 based, interfaces as Fortran modules to most of the C API including:
* All of the time-stepping modules in ARKODE:

— The farkode_arkstep_mod, farkode_erkstep_mod, and farkode_mristep_mod modules provide in-
terfaces to the ARKStep, ERKStep, and MRIStep integrators respectively.

— The farkode_mod module interfaces to the components of ARKODE which are shared by the time-
stepping modules.

¢ CVODE via the fcvode_mod module.
CVODES via the fcvodes_mod module.
¢ IDA via the fida_mod module.

e IDAS via the fidas_mod module.
e KINSOL via the fkinsol_mod module.

Additionally, all of the SUNDIALS base classes (N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinear-
Solver) include Fortran interface modules. A complete list of class implementations with Fortran 2003 interface
modules is given in Table 4.1.

An interface module can be accessed with the use statement, e.g.

use fcvode_mod
use fnvector_openmp_mod

and by linking to the Fortran 2003 library in addition to the C library, e.g. 1ibsundials_fnvecpenmp_mod.<so|a>,
libsundials_nvecopenmp.<so|a>, libsundials_fcvode_mod.<so|a> and 1libsundials_cvode.<so|a>.

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind(C) attribute to closely follow the
SUNDIALS C API (modulo language differences). The SUNDIALS classes, e.g. N_Vector, are interfaced as Fortran
derived types, and function signatures are matched but with an F prepending the name, e.g. FN_VConst instead of
N_VConst () or FCVodeCreate instead of CVodeCreate. Constants are named exactly as they are in the C APL
Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using it in C. Some caveats stemming
from the language differences are discussed in §4.5.2. A discussion on the topic of equivalent data types in C and
Fortran 2003 is presented in §4.5.1.

Further information on the Fortran 2003 interfaces specific to the N_Vector, SUNMatrix, SUNLinearSolver, and
SUNNonlinearSolver classes is given alongside the C documentation (§6, §7, §8, and §9 respectively). For details
on where the Fortran 2003 module (.mod) files and libraries are installed see §11.

The Fortran 2003 interface modules were generated with SWIG Fortran [42], a fork of SWIG. Users who are interested
in the SWIG code used in the generation process should contact the SUNDIALS development team.

Table 4.1: List of SUNDIALS Fortran 2003 interface modules

Class/Module Fortran 2003 Module Name
ARKODE farkode_mod
continues on next page
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Table 4.1 — continued from previous page

Class/Module

Fortran 2003 Module Name

ARKODE::ARKSTEP

farkode_arkstep_mod

ARKODE::ERKSTEP

farkode_erkstep_mod

ARKODE::MRISTEP

farkode_mristep_mod

CVODE fcvode_mod

CVODES fcvodes_mod

IDA fida_mod

IDAS fidas_mod

KINSOL fkinsol_mod

NVECTOR fsundials_nvector_mod

NVECTOR_SERIAL

fnvector_serial_mod

NVECTOR_OPENMP

fnvector_openmp_mod

NVECTOR_PTHREADS

fnvector_pthreads_mod

NVECTOR_PARALLEL

fnvector_parallel_mod

NVECTOR_PARHYP

Not interfaced

NVECTOR_PETSC

Not interfaced

NVECTOR_CUDA

Not interfaced

NVECTOR_RAJA

Not interfaced

NVECTOR_SYCL

Not interfaced

NVECTOR_MANVECTOR

fnvector_manyvector_mod

NVECTOR_MPIMANVECTOR

fnvector_mpimanyvector_mod

NVECTOR_MPIPLUSX

fnvector_mpiplusx_mod

SUNMATRIX

fsundials_matrix_mod

SUNMATRIX_BAND

fsunmatrix_band_mod

SUNMATRIX_DENSE

fsunmatrix_dense_mod

SUNMATRIX_MAGMADENSE

Not interfaced

SUNMATRIX_ONEMKLDENSE

Not interfaced

SUNMATRIX_SPARSE

fsunmatrix_sparse_mod

SUNLINSOL

fsundials_linearsolver_mod

SUNLINSOL_BAND

fsunlinsol_band_mod

SUNLINSOL_DENSE

fsunlinsol_dense_mod

SUNLINSOL_LAPACKBAND

Not interfaced

SUNLINSOL_LAPACKDENSE

Not interfaced

SUNLINSOL_MAGMADENSE

Not interfaced

SUNLINSOL_ONEMKLDENSE

Not interfaced

SUNLINSOL_KLU

fsunlinsol_klu_mod

SUNLINSOL_SLUMT

Not interfaced

SUNLINSOL_SLUDIST

Not interfaced

SUNLINSOL_SPGMR

fsunlinsol_spgmr_mod

SUNLINSOL_SPFGMR

fsunlinsol_spfgmr_mod

SUNLINSOL_SPBCGS

fsunlinsol_spbcgs_mod

SUNLINSOL_SPTFQMR

fsunlinsol_sptfgmr_mod

SUNLINSOL_PCG

fsunlinsol_pcg_mof

SUNNONLINSOL

fsundials_nonlinearsolver_mod

SUNNONLINSOL_NEWTON

fsunnonlinsol_newton_mod

SUNNONLINSOL_FIXEDPOINT

fsunnonlinsol_fixedpoint_mod

SUNNONLINSOL_PETSCSNES

Not interfaced

4.5. SUNDIALS Fortran Interface

51



User Documentation for IDA, v6.4.1

4.5.1 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive types map to
the iso_c_binding type equivalent. SUNDIALS classes map to a Fortran derived type. However, the handling of
pointer types is not always clear as they can depend on the parameter direction. Table 4.2 presents a summary of the
type equivalencies with the parameter direction in mind.

Warning: Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the realtype
is double-precision the sunindextype size is 64-bits.

Table 4.2: C/Fortran-2003 Equivalent Types

C Type Parameter Direction | Fortran 2003 type

double in, inout, out, return real (c_double)

int in, inout, out, return integer(c_int)

long in, inout, out, return integer(c_long)

booleantype in, inout, out, return integer(c_int)

realtype in, inout, out, return real (c_double)

sunindextype in, inout, out, return integer(c_long)

double* in, inout, out real (c_double), dimension(*)
double* return real(c_double), pointer, dimension(:)
int* in, inout, out real(c_int), dimension(*)

int* return real(c_int), pointer, dimension(:)
long* in, inout, out real(c_long), dimension(*)

long* return real(c_long), pointer, dimension(:)
realtype* in, inout, out real (c_double), dimension(*)
realtype* return real(c_double), pointer, dimension(:)
sunindextype® in, inout, out real(c_long), dimension(*)
sunindextype* return real(c_long), pointer, dimension(:)
realtypel[] in, inout, out real (c_double), dimension(*)
sunindextypel] in, inout, out integer(c_long), dimension(*)
N_Vector in, inout, out type(N_Vector)

N_Vector return type(N_Vector), pointer

SUNMatrix in, inout, out type (SUNMatrix)

SUNMatrix return type(SUNMatrix), pointer
SUNLinearSolver in, inout, out type(SUNLinearSolver)
SUNLinearSolver return type(SUNLinearSolver), pointer
SUNNonlinearSolver | in, inout, out type (SUNNonlinearSolver)
SUNNonlinearSolver | return type(SUNNonlinearSolver), pointer
FILE* in, inout, out, return type(c_ptr)

void* in, inout, out, return type(c_ptr)

T** in, inout, out, return type(c_ptr)

TH** in, inout, out, return type(c_ptr)

THwws in, inout, out, return type(c_ptr)
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4.5.2 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable due to the
differences between Fortran and C. In this section, we note the most critical differences. Additionally, §4.5.1 discusses
equivalencies of data types in the two languages.

4.5.2.1 Creating generic SUNDIALS objects

In the C API a SUNDIALS class, such as an N_Vector, is actually a pointer to an underlying C struct. However,
in the Fortran 2003 interface, the derived type is bound to the C struct, not the pointer to the struct. For example,
type(N_Vector) is bound to the C struct _generic_N_Vector not the N_Vector type. The consequence of this is
that creating and declaring SUNDIALS objects in Fortran is nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;
X = N_VNew_Serial (N, sunctx);

Fortran code:

type(N_Vector), pointer :: x
X => FN_VNew_Serial (N, sunctx)

Note that in the Fortran declaration, the vector is a type(N_Vector), pointer, and that the pointer assignment
operator is then used.

4.5.2.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when they are return values
versus arguments to a function. Additionally, pointers which are meant to be out parameters, not arrays, in the C API
must still be declared as a rank-1 array in Fortran. The reason for this is partially due to the Fortran 2003 standard for
C bindings, and partially due to the tool used to generate the interfaces. Regardless, the code snippets below illustrate
the differences.

C code:

N_Vector x;
realtype” xdata;
long int leniw, lenrw;

/% create a new serial vector */
X = N_VNew_Serial(N, sunctx);

/% capturing a returned array/pointer */
xdata = N_VGetArrayPointer(x)

/% passing array/pointer to a function */
N_VSetArrayPointer(xdata, x)

/* pointers that are out-parameters */
N_VSpace(x, &leniw, &lenrw);

Fortran code:
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type(N_Vector), pointer :: x

real (c_double), pointer :: xdataptr(:)

real (c_double) :: xdata(N)
integer(c_long) i1 leniw(1l), lenrw(l)

! create a new serial vector
x => FN_VNew_Serial(x, sunctx)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer(x)

! passing array/pointer to a function
call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters
call FN_VSpace(x, leniw, lenrw)

4.5.2.3 Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran procedure must
have the attribute bind (C). Additionally, when providing them as arguments to a Fortran 2003 interface routine, it is
required to convert a procedure’s Fortran address to C with the Fortran intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom data structure as a
void*. When using the Fortran 2003 interfaces, the same thing can be achieved. Note, the custom data structure does
not have to be bind (C) since it is never accessed on the C side.

C code:

MyUserData *udata;
void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);

Fortran code:

type (MyUserData) :: udata
type(c_ptr) :: arkode_mem

ierr = FARKStepSetUserData(arkode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem parameters, within
modules, and thus do not need the SUNDIALS-provided user_data pointers to pass such data back to user-supplied
functions. These users should supply the c_null_ptr input for user_data arguments to the relevant SUNDIALS
functions.
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4.5.2.4 Passing NULL to optional parameters

In the SUNDIALS C API some functions have optional parameters that a caller can pass as NULL. If the optional
parameter is of a type that is equivalent to a Fortran type(c_ptr) (see §4.5.1), then a Fortran user can pass the
intrinsic c_null_ptr. However, if the optional parameter is of a type that is not equivalent to type (c_ptr), then a
caller must provide a Fortran pointer that is dissociated. This is demonstrated in the code example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

/* SUNLinSolSolve expects a SUNMatrix or NULL as the second parameter. */
ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type(SUNLinearSolver), pointer :: LS
type(SUNMatrix), pointer 1 A
type(N_Vector), pointer it X, b

! Disassociate A
A = nullQ

! SUNLinSolSolve expects a type(SUNMatrix), pointer as the second parameter.
! Therefore, we cannot pass a c_null_ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve(LS, A, x, b)

4.5.2.5 Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as an opaque type(c_ptr). As such, it is not possi-
ble to directly index an array of N_Vector objects returned by the N_Vector “VectorArray” operations, or packages
with sensitivity capabilities (CVODES and IDAS). Instead, SUNDIALS provides a utility function FN_VGetVecAtIn-
dexVectorArray () that can be called for accessing a vector in a vector array. The example below demonstrates this:

C code:

N_Vector x;
N_Vector* vecs;

/* Create an array of N_Vectors */
vecs = N_VCloneVectorArray(count, X);

/* Fill each array with ones */
for (dint i = 0; i < count; ++i)
N_VConst(vecs[i], 1.0);

Fortran code:

type(N_Vector), pointer :: x, xi
type(c_ptr) :: vecs

! Create an array of N_Vectors
vecs = FN_VCloneVectorArray(count, Xx)

(continues on next page)
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! Fill each array with ones

do index = 0,count-1
xi => FN_VGetVecAtIndexVectorArray(vecs, index)
call FN_VConst(xi, 1.d0)

enddo

SUNDIALS also provides the functions N_VSetVecAtIndexVectorArray () and N_VNewVectorArray () for work-
ing with N_Vector arrays, that have corresponding Fortran interfaces FN_VSetVecAtIndexVectorArray and FN_-
VNewVectorArray, respectively. These functions are particularly useful for users of the Fortran interface to the NVEC-
TOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector array. Both of these functions
along with N_VGetVecAtIndexVectorArray () (wrapped as FN_VGetVecAtIndexVectorArray) are further de-
scribed in §6.1.1.

4.5.2.6 Providing file pointers

There are a few functions in the SUNDIALS C API which take a FILE* argument. Since there is no portable way to
convert between a Fortran file descriptor and a C file pointer, SUNDIALS provides two utility functions for creating a
FILE* and destroying it. These functions are defined in the module fsundials_futils_mod.

FILE *SUNDIALSFileOpen (filename, mode)
The function allocates a FILE* by calling the C function fopen with the provided filename and I/O mode.

Arguments:

e filename — the full path to the file, that should have Fortran type character(kind=C_CHAR,
len=%).

* mode — the I/O mode to use for the file. This should have the Fortran type character (kind=C_CHAR,
len=%*). The string begins with one of the following characters:

— rto open a text file for reading

— r+ to open a text file for reading/writing

— w to truncate a text file to zero length or create it for writing

— w+ to open a text file for reading/writing or create it if it does not exist

— ato open a text file for appending, see documentation of fopen for your system/compiler

— a+toopen atext file for reading/appending, see documentation for fopen for your system/compiler
Return value:

¢ The function returns a type (C_PTR) which holds a C FILE*.

void SUNDIALSFileClose(fp)
The function deallocates a C FILE* by calling the C function fclose with the provided pointer.

Arguments:

e fp — the C FILE* that was previously obtained from fopen. This should have the Fortran type
type(c_ptr).
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4.5.3 Important notes on portability

The SUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran 2003 ISO
standard. However, it has only been tested and confirmed to be working with GNU Fortran 4.9+ and Intel Fortran

18.0.1+.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003 interface. These
files are highly compiler specific, and thus it is almost always necessary to compile a consuming application with the

same compiler that was used to generate the modules.

4.5.4 Common Issues

In this subsection, we list some common issues users run into when using the Fortran interfaces.

Strange Segmentation Fault in User-Supplied Functions

One common issue we have seen trip up users (and even ourselves) has the symptom of segmentation fault in a user-
supplied function (such as the RHS) when trying to use one of the callback arguments. For example, in the following

RHS function, we will get a segfault on line 21:

integer(c_int) function ff(t, yvec, ydotvec, user_data) &
result(ierr) bind(C)

use, intrinsic :: iso_c_binding
use fsundials_nvector_mod
implicit none

real(c_double) :: t ! <===== Missing value attribute
type(N_Vector) :: yvec
type(N_Vector) :: ydotvec

type(c_ptr) :: user_data
real(c_double) :: e

real(c_double) :: u, v
real(c_double) :: tmpl, tmp2

real (c_double), pointer :: yarr(:)

real (c_double), pointer :: ydotarr(:)

! get N_Vector data arrays
yarr => FN_VGetArrayPointer(yvec)
ydotarr => FN_VGetArrayPointer(ydotvec) ! <===== SEGFAULTS HERE

! extract variables
u = yarr(l)
v = yarr(2)

! fill in the RHS function:

[0 0]*[(-1+ur2-r(t))/C*w] + [ 0 1
I [e -1] [(-2+vA2-5(t))/(2*Vv)] [sdot(t)/(2*vtrue(t))]
tmpl = (-ONE+u*u-r(t))/(TWO*u)

tmp2 = (-TWO+v*v-s(t))/(TWO*v)

ydotarr(1l) = ZERO

ydotarr(2) = e*tmpl - tmp2 + sdot(t)/(TWO*vtrue(t))

(continues on next page)
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! return success
ierr = 0
return

end function

The subtle bug in the code causing the segfault is on line 8. It should read real (c_double), value :: t instead
of real(c_double) :: t (notice the value attribute). Fundamental types that are passed by value in C need the
value attribute.

4.6 Features for GPU Accelerated Computing

In this section, we introduce the SUNDIALS GPU programming model and highlight SUNDIALS GPU features. The
model leverages the fact that all of the SUNDIALS packages interact with simulation data either through the shared
vector, matrix, and solver APIs (see Chapters §6, §7, §8, and §9) or through user-supplied callback functions. Thus,
under the model, the overall structure of the user’s calling program, and the way users interact with the SUNDIALS
packages is similar to using SUNDIALS in CPU-only environments.

4.6.1 SUNDIALS GPU Programming Model

As described in [11], within the SUNDIALS GPU programming model, all control logic executes on the CPU, and
all simulation data resides wherever the vector or matrix object dictates as long as SUNDIALS is in control of the
program. That is, SUNDIALS will not migrate data (explicitly) from one memory space to another. Except in the most
advanced use cases, it is safe to assume that data is kept resident in the GPU-device memory space. The consequence
of this is that, when control is passed from the user’s calling program to SUNDIALS, simulation data in vector or
matrix objects must be up-to-date in the device memory space. Similarly, when control is passed from SUNDIALS to
the user’s calling program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program to manage data
coherency between the CPU and GPU-device memory spaces unless unified virtual memory (UVM), also known as
managed memory, is being utilized. Typically, the GPU-enabled SUNDIALS modules provide functions to copy data
from the host to the device and vice-versa as well as support for unmanaged memory or UVM. In practical terms, the
way SUNDIALS handles distinct host and device memory spaces means that users need to ensure that the user-supplied
functions, e.g. the right-hand side function, only operate on simulation data in the device memory space otherwise extra
memory transfers will be required and performance will suffer. The exception to this rule is if some form of hybrid
data partitioning (achievable with the NVECTOR_MANY VECTOR, see §6.17) is utilized.

SUNDIALS provides many native shared features and modules that are GPU-enabled. Currently, these include the
NVIDIA CUDA platform [4], AMD ROCm/HIP [1], and Intel oneAPI [2]. Table 4.3-Table 4.6 summarize the shared
SUNDIALS modules that are GPU-enabled, what GPU programming environments they support, and what class of
memory they support (unmanaged or UVM). Users may also supply their own GPU-enabled N_Vector, SUNMatrix,
SUNLinearSolver, or SUNNonlinearSolver implementation, and the capabilties will be leveraged since SUNDI-
ALS operates on data through these APIs.

In addition, SUNDIALS provides a memory management helper module (see §10) to support applications which im-
plement their own memory management or memory pooling.
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Table 4.3: List of SUNDIALS GPU-enabled N_Vector Modules

Module CUDA | ROCm/HIP | oneAPI | Unmanaged Memory | UVM
NVECTOR_CUDA X X X
NVECTOR_HIP X X X X
NVECTOR_SYCL X3 X3 X X X
NVECTOR_RAJA X X X X X
NVECTOR_KOKKOS X X X X X
NVECTOR_OPENMPDEV | X X2 X2 X

Table 4.4: List of SUNDIALS GPU-enabled SUNMatrix Modules

Module CUDA | ROCnm/HIP | oneAPI | Unmanaged Memory | UVM
SUNMATRIX_CUSPARSE
SUNMATRIX_ONEMKLDENSE
SUNMATRIX_MAGMADENSE
SUNMATRIX_GINKGO
SUNMATRIX_KOKKOSDENSE
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Table 4.5: List of SUNDIALS GPU-enabled SUNLinearSolver Mod-
ules

Module CUDA | ROCm/HIP | oneAPI | Unmanaged Memory | UVM
SUNLINSOL_CUSOLVERSP X X X
SUNLINSOL_ONEMKLDENSE | X3 X3 X X X
SUNLINSOL_MAGMADENSE | X X X
SUNLINSOL_GINKGO X X X X
SUNLINSOL_KOKKOSDENSE | X X X X
SUNLINSOL_SPGMR XT XT XT XT XT
SUNLINSOL_SPFGMR X! XT XT XT XT
SUNLINSOL_SPTFOMR XT XT XT XT XT
SUNLINSOL_SPBCGS XT XT XT XT XT
SUNLINSOL_PCG XT XT XT XT XT

Table 4.6: List of SUNDIALS GPU-enabled SUNNonlinearSolver

Modules
Module CUDA | ROCm/HIP | oneAPI | Unmanaged Memory | UVM
SUNNONLINSOL_NEWTON XT XT X! X! X!
SUNNONLINSOL_FIXEDPOINT | X2 XTI X! XT XT

Notes regarding the above tables:
1. This module inherits support from the NVECTOR module used
2. Support for ROCm/HIP and oneAPI are currently untested.
3. Support for CUDA and ROCm/HIP are currently untested.

In addition, note that implicit UVM (i.e. malloc returning UVM) is not accounted for.
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4.6.2 Steps for Using GPU Accelerated SUNDIALS

For any SUNDIALS package, the generalized steps a user needs to take to use GPU accelerated SUNDIALS are:

1.

A

Utilize a GPU-enabled N_Vector implementation. Initial data can be loaded on the host, but must be in the
device memory space prior to handing control to SUNDIALS.

Utilize a GPU-enabled SUNLinearSolver linear solver (if applicable).
Utilize a GPU-enabled SUNMatrix implementation (if using a matrix-based linear solver).
Utilize a GPU-enabled SUNNonlinearSolver nonlinear solver (if applicable).

Write user-supplied functions so that they use data only in the device memory space (again, unless an atypical
data partitioning is used). A few examples of these functions are the right-hand side evaluation function, the
Jacobian evalution function, or the preconditioner evaulation function. In the context of CUDA and the right-
hand side function, one way a user might ensure data is accessed on the device is, for example, calling a CUDA
kernel, which does all of the computation, from a CPU function which simply extracts the underlying device data
array from the N_Vector object that is passed from SUNDIALS to the user-supplied function.

Users should refer to the above tables for a complete list of GPU-enabled native SUNDIALS modules.
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Chapter 5

Using IDA for IVP Solution

This chapter is concerned with the use of IDA for the integration of DAEs.

The following sections treat the header files and the layout of the user’s main program, and provide descriptions of the
IDA user-callable functions and user-supplied functions. The sample programs described in the companion document
[41] may also be helpful. Those codes may be used as templates (with the removal of some lines used in testing) and
are included in the IDA package.

IDA uses various constants for both input and output. These are defined as needed in this chapter, but for convenience
are also listed separately in §12.

The user should be aware that not all SUNLinearSolver and SUNMatrix objects are compatible with all N_Vector
implementations. Details on compatibility are given in the documentation for each SUNMatrix (Chapter §7) and
SUNLinearSolver (Chapter §8) implementation. For example, NVECTOR_PARALLEL is not compatible with the dense,
banded, or sparse SUNMatrix types, or with the corresponding dense, banded, or sparse SUNLinearSolver objects.
Please check Chapters §7 and §8 to verify compatibility between these objects. In addition to that documentation,
we note that the IDABBDPRE preconditioner can only be used with NVECTOR_PARALLEL. It is not recommended to
use a threaded vector object with SuperLU_MT unless it is the NVECTOR_OPENMP module, and SuperLU_MT is also
compiled with OpenMP.

5.1 Access to library and header files

At this point, it is assumed that the installation of IDA, following the procedure described in §11, has been completed
successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by IDA. The relevant library files are

<libdir>/libsundials_ida.<so|a>
<libdir>/libsundials_nvec*.<so|a>
<libdir>/libsundials_sunmat*.<so|a>
<libdir>/libsundials_sunlinsol*.<so|a>
<libdir>/libsundials_sunnonlinsol®.<so|a>

where the file extension . so is typically for shared libraries and .a for static libraries. The relevant header files are
located in the subdirectories

<incdir>/ida
<incdir>/sundials

(continues on next page)
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<incdir>/nvector
<incdir>/sunmatrix
<incdir>/sunlinsol
<incdir>/sunnonlinsol

The directories 1ibdir and incdir are the install library and include directories, respectively. For a default installa-
tion, these are <instdir>/1ib or <instdir>/1ib64 and <instdir>/include, respectively, where instdir is the
directory where SUNDIALS was installed (see §11).

5.2 Data Types

The header file sundials_types.h contains the definition of the types:
» realtype — the floating-point type used by the SUNDIALS packages
» sunindextype — the integer type used for vector and matrix indices
* booleantype — the type used for logic operations within SUNDIALS

e SUNOutputFormat — an enumerated type for SUNDIALS output formats

5.2.1 Floating point types

type realtype

The type realtype can be float, double, or long double, with the default being double. The user can
change the precision of the arithmetic used in the SUNDIALS solvers at the configuration stage (see SUNDIALS_-
PRECISION).

Additionally, based on the current precision, sundials_types.h defines BIG_REAL to be the largest value repre-
sentable as a realtype, SMALL_REAL to be the smallest value representable as a realtype, and UNIT_ROUNDOFF to
be the difference between 1.0 and the minimum realtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called RCONST. It is this macro that needs the ability
to branch on the definition of realtype. In ANSI C, a floating-point constant with no suffix is stored as a double.
Placing the suffix “F” at the end of a floating point constant makes it a float, whereas using the suffix “L” makes it a
long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a 1long double
constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if realtype is double, to 1.0F
if realtype is float, or to 1.0L if realtype is long double. SUNDIALS uses the RCONST macro internally to
declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g., fabs, sqrt, exp, etc.
in sundials_math.h. The macros are prefixed with SUNR and expand to the appropriate C function based on the
realtype. For example, the macro SUNRabs expands to the C function fabs when realtype is double, fabsf when
realtype is float, and fabsl when realtype is long double.

A user program which uses the type realtype, the RCONST macro, and the SUNR mathematical function macros is
precision-independent except for any calls to precision-specific library functions. Our example programs use real-
type, RCONST, and the SUNR macros. Users can, however, use the type double, float, or long double in their code
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(assuming that this usage is consistent with the typedef for realtype) and call the appropriate math library functions
directly. Thus, a previously existing piece of C or C++ code can use SUNDIALS without modifying the code to use
realtype, RCONST, or the SUNR macros so long as the SUNDIALS libraries are built to use the corresponding precision
(see §11.1.2).

5.2.2 Integer types used for indexing

type sunindextype

The type sunindextype is used for indexing array entries in SUNDIALS modules as well as for storing the total
problem size (e.g., vector lengths and matrix sizes). During configuration sunindextype may be selected to be
either a 32- or 64-bit signed integer with the default being 64-bit (see SUNDIALS_INDEX_SIZE).

When using a 32-bit integer the total problem size is limited to 231 — 1 and with 64-bit integers the limit is 263 — 1.
For users with problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype (see SUNDIALS_INDEX_TYPE).

A user program which uses sunindextype to handle indices will work with both index storage types except for any calls
to index storage-specific external libraries. Our C and C++ example programs use sunindextype. Users can, however,
use any compatible type (e.g., int, long int, int32_t, int64_t, or long long int) in their code, assuming that
this usage is consistent with the typedef for sunindextype on their architecture. Thus, a previously existing piece of
C or C++ code can use SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS
libraries use the appropriate index storage type (for details see §11.1.2).

5.2.3 Boolean type

type booleantype

As ANSI C89 (ISO C90) does not have a built-in boolean data type, SUNDIALS defines the type booleantype
as an int.

The advantage of using the name booleantype (instead of int) is an increase in code readability. It also allows the
programmer to make a distinction between int and boolean data. Variables of type booleantype are intended to have
only the two values SUNFALSE (0) and SUNTRUE (1).

5.2.4 Output formatting type

enum SUNOutputFormat
The enumerated type SUNOutputFormat defines the enumeration constants for SUNDIALS output formats
enumerator SUN_OUTPUTFORMAT_TABLE

The output will be a table of values

enumerator SUN_OUTPUTFORMAT_CSV

The output will be a comma-separated list of key and value pairs e.g., keyl,valuel,key2,value2,...

Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.
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5.3 Header files

The calling program must include several header files so that various macros and data types can be used. The header
file that is always required is:

e ida/ida.h the main header file for IDA, which defines the types and various constants, and includes function
prototypes. This includes the header file for IDALS, ida/ida_1s.h.

Note that ida.h includes sundials_types.h, which defines the types, realtype, sunindextype, and boolean-
type and the constants SUNFALSE and SUNTRUE.

The calling program must also include an N_Vector implementation header file, of the form nvector/nvector_*.h
(see Chapter §6 for more information). This file in turn includes the header file sundials_nvector.h which defines
the abstract vector data type.

If using a non-default nonlinear solver object, or when interacting with a SUNNonlinearSolver object directly, the
calling program must also include a SUNNonlinearSolver implementation header file, of the form sunnonlinsol/
sunnonlinsol_*.h where * is the name of the nonlinear solver (see Chapter §9 for more information). This file in
turn includes the header file sundials_nonlinearsolver.h which defines the abstract nonlinear linear solver data

type.

If using a nonlinear solver that requires the solution of a linear system of the form (2.3) (e.g., the default Newton itera-
tion), the calling program must also include a SUNLinearSolver implementation header file, of the from sunlinsol/
sunlinsol_*.h where * is the name of the linear solver (see Chapter §8 for more information). This file in turn
includes the header file sundials_linearsolver.h which defines the abstract linear solver data type.

If the linear solver is matrix-based, the linear solver header will also include a header file of the from sunmatrix/
sunmatrix_*.h where * is the name of the matrix implementation compatible with the linear solver. The matrix
header file provides access to the relevant matrix functions/macros and in turn includes the header file sundials_-
matrix.h which defines the abstract matrix data type.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the example idaFood-
Web_kry_p (see [41]), preconditioning is done with a block-diagonal matrix. For this, even though the SUNLINSOL_-
SPGMR linear solver is used, the header sundials/sundials_dense.his included for access to the underlying generic
dense matrix arithmetic routines.

5.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of a DAE IVP. Most of
the steps are independent of the N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinearSolver implemen-
tations used. For the steps that are not, refer to Chapters §6, §7, §8, and §9 for the specific name of the function to be
called or macro to be referenced.

1. Initialize parallel or multi-threaded environment (if appropriate)
For example, call MPI_Init to initialize MPI if used.

2. Create the SUNDIALS context object
Call SUNContext_Create() to allocate the SUNContext object.

3. Create the vector of initial values

Construct an N_Vector of initial values using the appropriate functions defined by the particular N_Vector
implementation (see §6 for details).

For native SUNDIALS vector implementations, use a call of the form y® = N_VMake_***(..., ydata) if
the array containing the initial values of y already exists. Otherwise, create a new vector by making a call of
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the form N_VNew_***(...), and then set its elements by accessing the underlying data with a call of the form
ydata = N_VGetArrayPointer(y®). Here, *** is the name of the vector implementation.

For hypre, PETSc, and Trilinos vector wrappers, first create and initialize the underlying vector, and then create
an N_Vector wrapper with a call of the form y® = N_VMake_***(yvec), where yvec is a hypre, PETSc, or
Trilinos vector. Note that calls like N_VNew_***(...) and N_VGetArrayPointer(...) are not available for
these vector wrappers.

Set the vector yp0 of initial conditions for y similarly.
4. Create matrix object (if appropriate)

If a linear solver is required (e.g., when using the default Newton solver) and the linear solver will be a matrix-
based linear solver, then a template Jacobian matrix must be created by calling the appropriate constructor defined
by the particular SUNMatrix implementation.

For the native SUNDIALS SUNMatrix implementations, the matrix object may be created using a call of the

form SUN***Matrix(...) where **¥* is the name of the matrix (see §7 for details).
5. Create linear solver object (if appropriate)

If alinear solver is required (e.g., when using the default Newton solver), then the desired linear solver object must
be created by calling the appropriate constructor defined by the particular SUNLinearSolver implementation.

For any of the native SUNDIALS SUNLinearSolver implementations, the linear solver object may be created
using a call of the form SUNLinearSolver LS = SUNLinSol_***(...); where *** is the name of the linear
solver (see §8 for details).

6. Create nonlinear solver object (if appropriate)

If using a non-default nonlinear solver, then the desired nonlinear solver object must be created by calling the
appropriate constructor defined by the particular SUNNonlinearSolver implementation.

For any of the native SUNDIALS SUNNonLinearSolver implementations, the nonlinear solver object may be
created using a call of the form SUNNonlinearSolver NLS = SUNNonlinSol_***(...); where *** is the
name of the nonlinear solver (see §9 for details).

7. Create IDA object
Call IDACreate () to create the IDA solver object.
8. Imitialize IDA solver

Call IDAInit () to provide the initial condition vectors created above, set the DAE residual function, and ini-
tialize IDA.

9. Specify integration tolerances
Call one of the following functions to set the integration tolerances:
e IDASStolerances() to specify scalar relative and absolute tolerances.
* IDASVtolerances() to specify a scalar relative tolerance and a vector of absolute tolerances.

e IDAWFtolerances () to specify a function which sets directly the weights used in evaluating WRMS vector
norms.

See §5.5.3 for general advice on selecting tolerances and §5.5.4 for advice on controlling unphysical values.
10. Attach the linear solver (if appropriate)

If a linear solver was created above, initialize the IDALS linear solver interface by attaching the linear solver
object (and matrix object, if applicable) with IDASetLinearSolver().
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11.

12.

13.

14.

15.

16.

17.

18.

19.

Set linear solver optional inputs (if appropriate)
See Table 5.2 for IDALS optional inputs and Chapter §8 for linear solver specific optional inputs.
Attach nonlinear solver module (if appropriate)

If a nonlinear solver was created above, initialize the IDANLS nonlinear solver interface by attaching the non-
linear solver object with TDASetNonlinearSolver().

Set nonlinear solver optional inputs (if appropriate)

See Table 5.3 for IDANLS optional inputs and Chapter §9 for nonlinear solver specific optional inputs. Note,
solver specific optional inputs must be called after IDASetNonlinearSolver (), otherwise the optional inputs
will be overridden by IDA defaults.

Specify rootfinding problem (optional)

Call IDARootInit() to initialize a rootfinding problem to be solved during the integration of the ODE system.
See Table 5.6 for relevant optional input calls.

Set optional inputs

Call IDASet*** functions to change any optional inputs that control the behavior of IDA from their default
values. See §5.5.10 for details.

Correct initial values (optional)

Call IDACalcIC() to correct the initial values y® and yp0 passed to IDAInit (). See Table 5.4 for relevant
optional input calls.

Advance solution in time

For each point at which output is desired, call ier = IDASolve(ida_mem, tout, &tret, yret, ypret,
itask). Here itask specifies the return mode. The vector yret (which can be the same as the vector y® above)
will contain y(t), while the vector ypret (which can be the same as the vector yp® above) will contain (t).

See IDASolve () for details.

Get optional outputs

Call IDAGet*** functions to obtain optional output. See §5.5.12 for details.
Destroy objects

Upon completion of the integration call the following functions, as necessary, to destroy any objects created
above:

* Call N_VDestroy () to free vector objects.

Call SUNMatDestroy () to free matrix objects.

Call SUNLinSolFree() to free linear solvers objects.

Call SUNNonlinSolFree() to free nonlinear solvers objects.

Call IDAFree () to free the memory allocated by IDA.
e Call SUNContext_Free() to free the SUNDIALS context.

20. Finalize MPL, if used

Call MPI_Finalize to terminate MPI.
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5.5 User-callable functions

This section describes the IDA functions that are called by the user to setup and then solve an IVP. Some of these are
required. However, starting with §5.5.10, the functions listed involve optional inputs/outputs or restarting, and those
paragraphs may be skipped for a casual use of IDA. In any case, refer to §5.4 for the correct order of these calls.

On an error, each user-call