gSOAP 2.8.58 User Guide

Robert van Engelen
Genivia Inc
WWW.genivia.com

December 17, 2017

Contents
1 Introduction 8
1.1 Getting Started 8
1.2 Quick Start: Developing a Web Service Client Application 9
1.3 Quick Start: Developing a Web Service 11
1.4 Quick Start: XML Data Bindings 14
1.5 Feature Overview 17
2 Notational Conventions 19
3 Differences Between gSOAP Versions 2.4 (and Earlier) and 2.5 19
4 Differences Between gSOAP Versions 2.1 (and Earlier) and 2.2 20
5 Differences Between gSOAP Versions 1.X and 2.X 20
6 Interoperability 22
7 Quick User Guide 23
7.1 How to Build SOAP/XML Clients 23
7.1.1 Example oL 25
7.1.2 XML Namespace Considerations 31
7.1.3 Example. 33
7.1.4 How to Generate C++ Client Proxy Classes 34
7.1.5 XSD Type Encoding Considerations 36
7.1.6 Example. 36
7.1.7 How to Change the Response Element Name 37

7.1.8
7.1.9
7.1.10
7.1.11

7.1.12
7.1.13
7.1.14
7.1.15

Example o
How to Specify Multiple Output Parameters
Example o

How to Specify Output Parameters With struct/class Compound Data
Types . . . o e

Exampleo
How to Specify Anonymous Parameter Names
How to Specify a Method with No Input Parameters
How to Specify a Method with No Output Parameters

7.2 How to Build SOAP/XML Web Serviceso

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.2.11

Example
MSVCH+ Builds o
How to Create a Stand-Alone Server
How to Create a Multi-Threaded Stand-Alone Service
How to Pass Application Data to Service Methods
Web Service Implementation Aspects.
How to Generate C++ Server Object Classes
How to Chain C++ Server Classes to Accept Messages on the Same Port
How to Generate WSDL Service Descriptions

7.3 Asynchronous One-Way Message Passing

7.4 Implementing Synchronous One-Way Message Passing over HTTP

7.5 How to Use the SOAP Serializers and Deserializers to Save and Load Application
Data using XML Data Bindings oo

7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7

Mapping XML Schema to C/C++ with wsdl2h
Mapping C/C++ to XML Schema with soapcpp2
Serializing C/C++ Datato XML
Deserializing C/C++ Data from XML
Example o
Serializing and Deserializing Class Instances to Streams

How to Specify Default Values for Omitted Data

8 The wsdl2h WSDL and Schema Importer
8.1 wsdl2h Options
8.2 Customizing Data Bindings With The typemap.dat File

58

9 Using the soapcpp2 Compiler and Code Generator 92

9.1 soapcpp2 Options. e 93
9.2 SOAP 1.1 Versus SOAP 1.2 and Dynamic Switching 95
9.3 The soapdefs.h Header File 96
9.4 How to Build Modules and Libraries with the #module Directive 97
9.5 How to use the #import Directive o oL, 98
9.6 How to Use #include and #define Directives 98
9.7 Compiling a SOAP/XML Client Application with soapepp2 99
9.8 Compiling a SOAP/XML Web Service with soapcpp2 100
9.9 Compiling Web Services and Clients in ANSIC 100
9.10 Limitations of gSOAP 101
9.11 Library Build Flags. 102
9.12 Run Time Flags« . e 104
9.13 Memory Management 107
9.13.1 Memory Allocation and Management Policies 108
9.13.2 Intra-Class Memory Management 110

9.14 Debugging L. 112
9.15 Generating an Auto Test Server for Client Testing 113
9.16 Generating Deep Copy and Deletion Code 113
9.17 Required Libraries L 114
10 The gSOAP Service Operation Specification Format 114
10.1 Service Operation Parameter Passing 116
10.2 Error Codes e 117
10.3 C/C++ Identifier Name to XML Tag Name Mapping 120
10.4 Namespace Mapping Table o 124
11 gSOAP Serialization and Deserialization Rules 126
11.1 SOAP RPC Encoding Versus Document/Literal and xsi:type Info 126
11.2 Primitive Type Encoding Lo 127
11.3 How to Represent Primitive C/C++ Types as XSD Types 128
11.3.1 How to Use Multiple C/C++ Types for a Single Primitive XSD Type . . 134
11.3.2 How to use C++ Wrapper Classes to Specify Polymorphic Primitive Types134
11.3.3 XSD Schema Type Decoding Rules 136
11.3.4 Multi-Reference Strings oo 139
11.3.5 “Smart String” Mixed-Content Decoding 139
11.3.6 CH+ Strings oo 140
11.3.7 Changing the Encoding Precision of float and double Types 140
11.3.8 INF, -INF, and NaN Values of float and double Types 141

11.4 Enumeration Serialization o 142

11.4.1 Serialization of Symbolic Enumeration Constants 142
11.4.2 Encoding of Enumeration Constants 143
11.4.3 Initialized Enumeration Constants 143
11.4.4 How to “Reuse” Symbolic Enumeration Constants 143
11.4.5 Boolean Enumeration Serialization for C. 144
11.4.6 Bitmask Enumeration Serialization 145
11.5 Struct Serialization 145
11.6 Class Instance Serialization 146
11.6.1 Example o 147
11.6.2 Initialized static const Fields 148
11.6.3 Class Methods 149
11.6.4 Getter and Setter Methods L. 149
11.6.5 Streaming XML with Getter and Setter Methods 150
11.6.6 Polymorphism, Derived Classes, and Dynamic Binding 151
11.6.7 XML Attributes 154
11.6.8 QName Attributes and Elements 155
11.7 Union Serialization 156
11.8 Serializing Pointer Types« . . . 158
11.8.1 Multi-Referenced Datao 158
11.8.2 NULL Pointers and Nil Elements 159
11.9 Void Pointers oL 160
11.10Fixed-Size Arrays o o e 161
11.11Dynamic ATTays o . Lo e 162
11.11.1SOAP Array Bounds Limits 162
11.11.2 One-Dimensional Dynamic SOAP Arrays 162
11.11.3Example o o e 163
11.11.4 One-Dimensional Dynamic SOAP Arrays With Non-Zero Offset 165
11.11.5Nested One-Dimensional Dynamic SOAP Arrays 166
11.11.6 Multi-Dimensional Dynamic SOAP Arrays 167
11.11.7 Encoding XML Generics Containing Dynamic Arrays 168
11.11.8 STL Containers o ittt 170
11.11.9 Polymorphic Dynamic Arrays and Lists 173
11.11.1How to Change the Tag Names of the Elements of a SOAP Array or List 174
11.12Base64Binary XML Schema Type Encoding 175
11.13hexBinary XML Schema Type Encoding 177
11.14Literal XML Encoding Style o 178
11.14.1 Serializing and Deserializing Mixed Content XML With Strings 180

12 SOAP Fault Processing
13 SOAP Header Processing

14 MIME Attachments
14.1 Sending a Collection of MIME Attachments (SwA)
14.2 Retrieving a Collection of MIME Attachments (SwA)

15 DIME Attachments
15.1 Sending a Collection of DIME Attachments
15.2 Retrieving a Collection of DIME Attachments
15.3 Serializing Binary Data in DIME
15.4 Streaming DIME
15.5 Streaming Chunked DIME o
15.6 WSDL Bindings for DIME Attachments

16 MTOM Attachments
16.1 Generating MultipartRelated MIME Attachment Bindings in WSDL
16.2 Sending and Receiving MTOM Attachments
16.3 Streaming MTOM/MIME
16.4 Redirecting Inbound MTOM/MIME Streams Based on SOAP Body Content .
16.5 Streaming Chunked MTOM/MIME

17 XML Validation
17.1 Occurrence Constraints o
17.1.1 Default Values
17.1.2 Elements with minOccurs and maxOccurs Restrictions
17.1.3 Required and Prohibited Attributes
17.2 Value Constraints L
17.2.1 Data Length Restrictions
17.2.2 Value Range Restrictions
17.2.3 Pattern Restrictions oo
17.3 Element and Attribute Qualified/Unqualified Forms

18 SOAP/XML Over UDP
18.1 Using WS-Addressing with SOAP-over-UDP
18.2 Client-side One-way Unicast i
18.3 Client-side One-way Multicast
18.4 Client-side Request-Response Unicast
18.5 Client-side Request-Response Multicast
18.6 SOAP-over-UDP Server
18.7 SOAP-over-UDP Multicast Receiving Server

181

184

186
186
189

189
190
190
191
194
198
198

198
200
200
202

. 207

209

209
209
209
210
210
211
211
212
213
213

19 Advanced Features 223

19.1 Imternationalization 223
19.2 Customizing the WSDL and Namespace Mapping Table File Contents With
gSOAP Directives oL 223
19.2.1 Example oL 231
19.3 Transient Data Types 232
19.4 Serialization ”as is” with Volatile Data Types 234
19.5 How to Declare User-Defined Serializers and Deserializers 235
19.6 How to Serialize Data Without Generating XSD Type Attributes 236
19.7 Function Callbacks for Customized I/O and HTTP Handling 237
19.8 HTTP 1.0 and 1.1 o . e e e e e 245
19.9 HTTP 307 Temporary Redirect Support 245
19.10HTTP GET Support o s e e 246
19.11TCP and HTTP Keep-Alive e 247
19.12HTTP Chunked Transfer Encoding 249
19.13HTTP Buffered Sends 249
19.14HTTP Authentication 250
19.15HTTP NTLM Authentication 251
19.16HTTP Proxy NTLM Authentication 252
19.17THTTP Proxy Basic Authentication 253
19.18Messaging Speed and Performance Improvement Tips 253
19.19XML Parsing Options to set Safety Guards 254
19.20Timeout Management for Non-Blocking Operations 255
19.21Socket Options and Flags 256
19.220verriding the Host and Port to Connect 256
19.23Secure Web Services with HTTPS/SSL 257
19.24Secure Clients with HTTPS/SSL 262
19.25SSL Authentication Callbacks L 264
19.26SSL Certificates and Key Files 264
19.27SSL Hardware Acceleration 266
19.28SSL on Windows L 267
19.29Z1ib Compression 267
19.30Client-Side Cookie Support 269
19.31Server-Side Cookie Support 269
19.32Connecting Clients Through Proxy Servers 272
19.33Bind Before Connect and Setting the Client Interface Address 272
19.34FastCGI Support 273
19.35How to Create gSOAP Applications With a Small Memory Footprint 273

19.36How to Eliminate BSD Socket Library Linkage 274
19.37How to Combine Multiple Client and Server Implementations into one Executable 275

19.38How to Build a Client or Server in a C++ Code Namespace 275
19.39How to Create Client/Server Libraries 276
19.39.1C++ Clients Example o 277
19.39.2C Clients Example 280
19.39.3 C Services Chaining Example 282
19.40How to Create DLLs 283
19.40.1 Create the Base stdsoap2.dll 283
19.40.2 Creating Client and Server DLLs 284
19.41gSOAP Plug-ins 284
19.41.1 The Message Logging and Statistics Plug-in 287
19.41.2RESTful Client-Side APT 288
19.41.3 RESTful Server-Side API: The HTTP GET Plug-in 288
19.41.4RESTful Server-Side API: The HTTP POST Plug-in. 290
19.41.5The HTTP MD5 Checksum Plug-in 291
19.41.6 The HTTP Digest Authentication Plug-in 292
19.41.7The WS-Addressing Plug-in L. 294
19.41.8 The WS-ReliableMessaging Plug-in 294
19.41.9 The WS-Security Plug-in 295
19.41.10NS-DIiSCOVETY . .+ v v v v o e e e e e e e e e e 295

Copyright (C) 2000-2015 Robert A. van Engelen, Genivia Inc, All Rights Reserved.

1 Introduction

The gSOAP tools provide an automated SOAP and XML data binding for C and C++ based
on compiler technologies. The tools simplify the development of SOAP/XML Web services and
XML application in C and C++4 using autocode generation and advanced mapping methods. Most
toolkits for Web services adopt a WSDL/SOAP-centric view and offer APIs that require the use of
class libraries for XML-specific data structures. This forces a user to adapt the application logic
to these libraries because users have to write code to populate XML and extract data from XML
using a vendor-specific API. This often leads to fragile solutions with little or no assurances for
data consistency, type safety, and XML validation. By contrast, gSOAP provides a type-safe and
transparent solution through the use of compiler technology that hides irrelevant WSDL-, SOAP-,
REST-, and XML-specific protocol details from the user, while automatically ensuring XML validity
checking, memory management, and type-safe serialization. The gSOAP tools automatically map
native and user-defined C and C++ data types to semantically equivalent XML data types and
vice-versa. As a result, full SOAP/REST XML interoperability is achieved with a simple API
relieving the user from the burden of WSDL/SOAP /XML details, thus enabling him or her to
concentrate on the application-essential logic.

The gSOAP tools support the integration of (legacy) C/C++ codes (and other programming lan-
guages when a C interface is available), embedded systems, and real-time software in SOAP /XML
applications that share computational resources and information with other SOAP applications,
possibly across different platforms, language environments, and disparate organizations located
behind firewalls.

The gSOAP tools are also popular to implement XML data binding in C and C++. This means
that application-native data structures can be encoded in XML automatically, without the need to
write conversion code. The tools also produce XML schemas for the XML data binding, so external
applications can consume the XML data based on the schemas.

1.1 Getting Started

To start building Web services applications or automate XML data bindings with gSOAP, you
need:

e The gSOAP package from https://www.genivia.com/Products/downloads.html and se-
lect the gSOAP toolkit commercial edition, or download the GPL open source version from
SourceForge https://sourceforge.net/projects/gsoap2.

e A C or C++ compiler.

e You may want to install OpenSSL and the Zlib libraries to enable SSL (HTTPS) and com-
pression. These libraries are available for most platforms and are often already installed.

The gSOAP software is self-contained, so there is no need to download any third-party software,
except when you want to use OpenSSL for HTTPS and/or Zlib compression.

The gSOAP distribution package includes:

e The wsdl2h WSDL/schema converter and data binding tool.

e The soapcpp2 stub/skeleton compiler and code generator.

Binaries of these two tools are included in the gSOAP package in gsoap/bin for Windows and Mac
OS plarforms, see also the README files in the package for more details.

Although gSOAP tools are available in binary format for several platforms, the code generated by
these tools are all equivalent. This means that the generated source codes can be transferred to
other platforms and locally compiled.

If you don’t have the binaries or if you want to rebuild them, you need

e Bison (or Yacc) to build soapcpp2.
e Flex (or Lex) to build soapcpp2.

e A C++ compiler to build wsdl2h.

Bison and Flex are preferred. Both are released under open source licenses that are compatible
with gSOAP’s licenses.

e Bison is available from http://www.gnu.org/software/bison

e Flex is available from http://flex.sourceforge.net

You can also build soapcpp2 without Bison and Flex installed, see installation instructions on the
gSOAP web site.

The gSOAP engine is built as a library libgsoap.a and libgsoap++.a with separate versions of these
two libgsoapssl.a and libgsoapssl++.a that support SSL. See the README.txt instructions on how
to build these libraries with the platform-independent gSOAP package’s autoconf and automake.
Alternatively, you can compile and link the engine’s source code stdsoap2.c (or stdsoap2.cpp for C++)
directly with your code.

The gSOAP packages contain numerous examples in the samples directory. Run make to build the
example applications. The examples are also meant to demonstrate different features of gSOAP. A
streaming MTOM attachment server and client application demonstrate efficient file exchanges in
samples/mtom-stream. An SSL-secure Web server application demonstrates the generation of dynamic
content for Web browsing and Web services functionality at the same time, see samples/webservice.
And much more.

1.2 Quick Start: Developing a Web Service Client Application

The gSOAP tools minimize application adaptation efforts for building Web Services by using a
XML data binding for C and C++ implemented by advanced XML schema analyzers and source-
to-source code generation tools. The gSOAP wsdI2h tool imports one or more WSDLs and XML
schemas and generates a gSOAP header file with familiar C/C++ syntax to define the Web service
operations and the C/C++ data types. The gSOAP soapcpp2 compiler then takes this header

file and generates XML serializers for the data types (soapH.h and soapC.cpp), the client-side stubs
(soapClient.cpp), and server-side skeletons (soapServer.cpp).

The gSOAP soapcpp2 compiler can also generate WSDL definitions for implementing a service from
scratch, i.e. without defining a WSDL first. This ”closes the loop” in that it enables Web services
development from WSDL or directly from a set op C/C++ operations in a header file without the
need for users to analyze Web service details.

You only need to follow a few steps to execute the tools from the command line or Makefile (see
also MSVC++ project examples in the samples directory with tool integration in the MSVC++
IDE). For example, to generate code for the calculator Web service, we run the wsdI2h tool from
the command line on the URL of the WSDL and use option -o to specify the output file:

> wsdI2h -o calc.h http://www.genivia.com/calc.wsdl

This generates the calc.h service definition header file with service operation definitions and types
for the operation’s data. This header file is then to be processed with soapcpp2 to generate the stub
and/or skeleton code and XML serialization routines. The calc.h file includes all documentation,
so you can use Doxygen (http://www.doxygen.org) to automatically generate the documentation
pages for your development.

The wsdl2h-generated service definitions header file also contains information on the use of the
service, such as WS-Policy assertions when applicable.

In this example we are developing a C++ API for the calculator service. By default, gSOAP
assumes you will use C++ with STL. To build without STL, use option -s:

> wsd|2h -s -o calc.h http://www.genivia.com/calc.wsdl

To build a pure C application, use option -c:

> wsdI2h -c -o calc.h http://www.genivia.com/calc.wsdl

Important: Visual Studio users shopuld make sure to compile all gSOAP source files in C++
compilation mode. If you migrate to a project file .vcproj, please set CompileAs="2" in your .vcproj
file. We have not yet generated the stubs for the C/C++ API. To do so, run the soapcpp2 compiler:

> soapcpp? -i -C -limport calc.h

Option -i (and alternatively option -j) indicates that we want C++ proxy and server objects that
include the client (and server) code, -C indicates client-side only files (soapcpp2 generates both client
and server stubs and skeletons by default). Option -l is needed to import the stlvector.h file from
the import directory in the gSOAP package to support serialization of STL vectors.

Suppose we develop a C++ client for the calculator service using wsdI2h -o calc.h http: //www.genivia.com/calc.wsdl
and soapcpp? -i -C calc.h.

We use the generated soapcalcProxy class and calc.nsmap XML namespace mapping table to access
the Web service. The soapcalcProxy class is a proxy to invoke the service:

10

#include "soapcalcProxy.h”
#include " calc.nsmap”
int main()

{

calcProxy service;
double result;
if (service.add(1.0, 2.0, result) == SOAP_OK)
std::cout << "The sum of 1.0 and 2.0 is " << result << std::endl;
else
service.soap_stream _fault(std::cerr);
service.destroy(); // delete data and release memory

}

To complete the build, compile the code above and compile and link this with the generated
soapC.cpp, soapcalcProxy.cpp, and the run-time gSOAP engine -lgsoap++ (or use source stdsoap2.cpp
in case libgsoap++.a is not installed) with your code.

Suppose we develop a client in C using wsdI2h -c -o calc.h http://www.genivia.com/calc.wsdl and soapcpp2
-C calc.h. In this case our code uses a simple C function call to invoke the service and we also need
to explicitly delete data and the context with soap_end and soap_free:

#include "soapH.h"
#include " calc.nsmap”
int main()

{

struct soap *soap = soap_new();

double result;

if (soap_call_ns__add(soap, 1.0, 2.0, &result) == SOAP_OK)
printf(" The sum of 1.0 and 2.0 is %lg\n", result);

else
soap-print_fault(soap, stderr);

soap-end(soap);

soap_free(soap);

}

The calculator example is fairly simple and used here to illustrate the development process. The
development process for large-scale XML applications is similar. More extensive examples can be
found in the samples directory in the gSOAP package.

1.3 Quick Start: Developing a Web Service

Developing a service application is easy too. We will use CGI here because it is a simple mechanism.
This is not the preferred deployment mechanism. Because CGI is slow and stateless. Faster services
can be developed as a stand-alone gSOAP HTTP/HTTPS server (but see comments at the end of
this section) or, as preferred and recommended for security reasons, the use of Apache module or
IIS with the mod_gsoap ISAPI extension (included in the gSOAP package under gsoap/mod_gsoap
with instructions).

Suppose we implement a CGI-based service that returns the time in GMT. The Common Gateway
Interface (CGI) is a simple mechanism to publish services on your Web site.

11

For this example we start with a gSOAP header file, currentTime.h which contains the service defi-
nitions. Such a file can be obtained from a WSDL using wsdI2h when a WSDL is available. When a
WSDL is not available, you can define the service in C/C++ definitions in a newly created header
file and let the gSOAP tools generate the source code and WSDL for you.

Our currentTime service only has an output parameter, which is the current time defined in our
currentTime.h gSOAP service specification:

// File: currentTime.h

//gsoap ns service name: currentTime

//gsoap ns service namespace: urn:currentTime

//gsoap ns service location: http://www.yourdomain.com/currentTime.cgi
int ns__currentTime(time_t& response);

Note that we associate an XML namespace prefix ns and namespace name urn:currentTime with the
service WSDL and SOAP /XML messages. The gSOAP tools use a special convention for identifier
names that are part of a namespace: a namespace prefix (ns in this case) followed by a double
underscore __. This convention is used to resolve namespaces and to avoid name clashes. The ns
namespace prefix is bound to the urn:currentTime namespace name with the //gsoap directive. The
//gsoap directives are used to set the properties of the service, in this case the name, namespace,
and location endpoint.

The service implementation for CGI requires a soap_serve call on a soap context created with soap_new.
The service operations are implemented as functions, which are called by the RPC dispatcher
soap_serve:

// File: currentTime.cpp

#include "soapH.h" // include the generated declarations

#include "currentTime.nsmap” // include the XML namespace mappings
int main()

{

// create soap context and serve one CGl-based request:
return soap_serve(soap_new());

}

int ns__currentTime(struct soap *soap, time_t& response)

{

response = time(0);
return SOAP_OK;
}

Note that we pass the soap struct with the gSOAP context information to the service routine. This
can come in handy to determine properties of the connection and to dynamically allocate data with
soap_malloc(soap, num_bytes) that will be automatically deleted when the service is finished.

We run the soapcpp2 compiler on the header file to generate the server-side code:
> soapcpp? -S currentTime.h
and then compile the CGI binary:

> c++ -o currentTime.cgi currentTime.cpp soapC.cpp soapServer.cpp stdsoap2.cpp

12

You will find stdsoap2.cpp in the gsoap dir. Or after installation you can link with libgsoap++ instead
of using the stdsoap2.cpp source:

> c++ -o currentTime.cgi currentTime.cpp soapC.cpp soapServer.cpp -lgsoap++

To activate the service, copy the currentTime.cgi binary to your bin-cgi directory using the proper file
permissions.

The soapcpp2 tool generated the WSDL definitions currentTime.wsdl. You can use the WSDL to
advertize your service. You don’t need to use this WSDL to develop a gSOAP client. You can use
the currentTime.h file with soapcpp2 option -C to generate client-side code.

A convenient aspect of CGI is that it exchanges messages over standard input/output. Therefore,
you can run the CGI binary on the auto-generated example request XML file to test your server:

> ./currentTime.cgi < currentTime.currentTime.req.xml

and this displays the server response in SOAP XML.

The above approach works also for C. Just use soapcpp2 option -c in addition to the -S option to
generate ANSI C code. Of course, in C we use pointers instead of references and the currentTime.h
file should be adjusted to use C-only types.

A more elegant server implementation in C+4 can be obtained by using the soapcpp2 option -i
(or -j) to generate C++ client-side proxy and server-side service objects as classes that you can
use to build clients and services in C++. The option removes the generation of soapClient.cpp and
soapServer.cpp, since these are no longer needed when we have classes that implement the client and
server logic:

> soapcpp? -i -S currentTime.h

This generates soapcurrentTimeService.h and soapcurrentTimeService.cpp files, as well as auxiliary files
soapStub.h (included by default by all codes) and currentTime.nsmap.

Using the currentTimeService object we rewrite the CGI server as:

// File: currentTime.cpp
#include "soapcurrentTimeService.h” // include the proxy declarations
#include " currentTime.nsmap” // include the XML namespace mappings
int main()
{

// create server and serve one CGl-based request:

currentTimeService server;

server.serve();

server.destroy();

}

int currentTimeService::currentTime(time_t& response)

{

response = time(0);
return SOAP_OK;
}

13

Compile with
> c++ -o currentTime.cgi currentTime.cpp soapC.cpp soapcurrentTimeService.cpp -lgsoap++

and install the binary as CGI. To install the CGI binary please consult your Web server documen-
tation on how to deploy CGI applications.

To run the server as a stand-alone iterative (non-multithreaded) server on port 8080 until accept()
timeout times out or an error occurs:

if (server.run(8080))
server.soap_stream_fault(std::cerr);

To run the server as a stand-alone iterative server on port 8080 while ignoring common errors until
a TCP error occurs:

while (server.run(8080) != SOAP_OK)

{
if (server.soap—>error == SOAP_TCP_ERROR)
break;
server.soap_stream_fault(std::cerr);
}

To implement threaded services, please see Section 7.2.4. These stand-alone Web Services that
handle multiple SOAP requests by spawning a thread for each request. Thread pooling is also an
option. The use of Apache and IIS modules to deploy gSOAP services is preferred and recommended
to ensure load balancing, access control, tracing, security, and so on.

For more information on server-side service classes, see Section 7.2.7. For more information on
client-side proxy classes, see Section 7.1.4.

1.4 Quick Start: XML Data Bindings

Or in other words, how to map schemas (XSD files) to C/C++ bindings for automatically reading
and writing XML data.

The XML C/C++ data binding in gSOAP provides and automated mechanism to encode any C
and C++ data type in XML (and decode XML back to C/C++ data). An XML schema (XSD
file) can be transformed into a set of C or C++ definitions that can be readily incorporated into
your application to manipulate XML with much more ease than DOM or SAX. Essentially, each
XML component definition in an XML schema has a C/C++ data type representation that has
equivalent type properties. The advantage of this approach is immediately apparent when we look
at an XSD complexType that maps to a class:

14

XSD C++

<complexType name="Address"> class ns__Address
<sequence> {
<element name="name" type="string"/> std: :string name;
<element name="home" type="tns:Location" minOccurs="0"/> ns__Location *home;
<element name="phone" type="unsignedLong"/> ULONG64 phone;
<element name="dob" type="dateTime"/> time_t dob;
</sequence>
<attribute name="ID" type="int" use="required"/> @int ID;
</complexType> }

In this way, an automatic mapping between XML elements of the XML schema and members of a
class is created. No DOM traversals and SAX events are needed. In addition, the XML C/C++
data binding makes XML manipulation type safe. That is, the type safety of C/C++ ensures that
only valid XML documents can be parsed and generated.

The wsdI2h tool performs the mapping of WSDL and XML schemas to C and/or C++ automatically.
The output of wsdl2h is an annotated header file that includes comments and documentation on
the use of the C/C++ declarations in a SOAP /XML client/server or in a generic application for
reading and writing XML using the auto-generated serializers.

We will illustrate this further with an example. Suppose we have an XML document with a book
record:

<book isbn="1234567890">
<title>Farewell John Doe</title>
<publisher>ABC’s is our Name</publisher>
</book>

An example XML schema that defines the book element and type could be

<schema ...>
<element name="book">
<complexType>
<sequence>
<element name="title" type="string" minOccurs="1"/>
<element name="publisher" type="string" minOccurs="1"/>
</sequence>
<attribute name="isbn" type="unsignedLong" use="required"/>
</complexType>
</element>
</schema>

Using wsdI2h we translate the XML schema that defines the book type and root element to a class
definition:

class book

{
QULONG64 isbn;

std::string title;
std::string publisher;

}

15

Note that annotations such as @ are used to distinguish attributes from elements. These annotations
are gSOAP-specific and are handled by the soapcpp2 tool to generate serializers for the data type(s)
for reading and writing XML.

The soapcpp2 tool generates all the necessary code to parse and generate XML for book objects.
Validation constraints such as minOccurs="1" and use="required" are included in the generated
code as checks.

To write the XML representation of a book, we first create a soap engine context and use it with
soap_write_book (generated by soapcpp2) to write the object in XML to standard output:

soap *ctx = soap-newl(SOAP_XML_INDENT); // new context with option
book bk;
bk.isbn = 1234567890;
bk.title = " Farewell John Doe";
bk.publisher = "ABC's is our Name";
if (soap_write_book(ctx, &bk) = SOAP_OK)
. error ...
soap_destroy(ctx); // clean up allocated class instances
soap-end(ctx); // clean up allocated temporaries
soap_free(ctx); // delete context

The ctx gSOAP engine context (type struct soap) controls settings and holds state, such as XML
formatting, (e.g. SOAP_XML_INDENT), serialization options, current state, and I/O settings. Simply
set the output stream (std::ostream) ctx->os of the context to redirect the content, e.g. to a file
or string. Also, when serializing a graph rather than an XML tree (SOAP_XML_TREE option forces
trees) the XML output conforms to SOAP encoding for object graphs based on id-ref, see Section 7.5
for details.

To read the XML representation from standard input into a book object, use:

soap *ctx = soap_newl(SOAP_XML_STRICT); // new context with option

book bk;
if (soap_read_book(ctx, &bk) = SOAP_OK) ... error ...
else

cout jj bk.isbn jj ", " ji bk.title jj ", " ji bk.publisher jj endl;

... further use of bk ...

soap_destroy(ctx); // delete deserialized objects
soap_end(ctx); // delete temporaries
soap_free(ctx); // delete context

Automatic built-in strict XML validation (enabled with SOAP_XML_STRICT) ensures that data mem-
bers are present so we can safely print them in this example, thus ensuring consistency of data with
the XML schema. Set the ctx—>is input stream to read from a file/string stream instead of stdin.

The soap_destroy and soap_end calls deallocate the deserialized content, so use with care. In general,
memory management is automatic in gSOAP to avoid leaks.

The above uses a very simple example schema. The gSOAP toolkit handles all XML schema con-
structs defined by the XML schema standard. The toolkit is also able to (de)serialize pointer-based
C/C++ data structures (including cyclic graphs), structs/classes, unions, enums, STL containers,

16

and even special data types such as struct tm. Therefore, the toolkit works in two directions: from
WSDL/schema to C/C++ and from C/C++ to WSDL/schema.

The gSOAP toolkit also handles multiple schemas defined in multiple namespaces. Normally the
namespace prefixes of XML namespaces are added to the C/C++ type definitions to ensure type
uniqueness. For example, if we would combine two schemas in the same application where both
schemas define a book object, we need to resolve this conflict. In gSOAP this is done using names-
pace prefixes, rather than C++ namespaces (research has pointed out that XML namespaces are
not equivalent to C++ namespaces). Thus, the book class might actually be bound to an XML
namespace and the class would be named ns__book, where ns is bound to the corresponding names-
pace.

The following options are available to control serialization:

soap-jencodingStyle = NULL; // to remove SOAP 1.1/1.2 encodingStyle
soap-mode(soap, SOAP_XML_TREE); // XML without id-ref (no cycles!)
soap-mode(soap, SOAP_XML_GRAPH); // XML with id-ref (including cycles)
soap-_set_namespaces(soap, struct Namespace *nsmap); //to set xmlns bindings

Other flags can be used to format XML, see Section 9.12.
For more details on XML databinding support for C and C++, see Section 7.5.

1.5 Feature Overview

The highlights of gSOAP are:

e Unique interoperability features: the tools generate type-safe SOAP marshalling routines to
(de)serialize native and user-defined C and C++ data structures.

e Support WSDL 1.1, WSDL 2.0, REST, SOAP 1.1, SOAP 1.2, SOAP RPC encoding style, and
document /literal style. gSOAP is one of the few SOAP toolkits that support the full range of
SOAP 1.1 RPC encoding features including sparse multi-dimensional arrays and polymorphic
types. For example, a service operation with a base class parameter may accept derived class
instances from a client. Derived class instances keep their identity through dynamic binding.
The toolkit also supports all XSD 1.0 and 1.1 schema type constructs and has been tested
against the W3C XML Schema Patterns for Databinding Interoperability working group and
of gSOAP release 2.8.x passes all tests.

e Supports WS-Security, WS-Addressing, WS-ReliableMessaging, C14N exclusive canonicaliza-
tion. The protocols are implemented using code generation with wsdl2h and soapcpp2. The
gSOAP tools can be used to generate messaging protocols for other WS-* protocols.

e gSOAP supports XML-RPC and RSS protocols. Examples are provided.

e JSON support is included in the XML-RPC library to switch between XML-RPC and JSON
protocols. For more details, see the samples/xml-rpc-json folder in the package.

e The wsdI2h tool supports WS-Policy. Policy assertions are included in the generated service
description header file with recommendations and usage hints.

17

gSOAP supports MIME (SwA), DIME, and MTOM attachments and has streaming capabil-
ities to direct the data stream to/from resources. gSOAP is the only toolkit that supports
streaming MIME, DIME, and MTOM attachment transfers, which allows you to exchange
binary data of practically unlimited size in the fastest possible way (streaming) while ensuring
the usefulness of XML interoperability.

gSOAP supports SOAP-over-UDP.
gSOAP supports IPv4 and IPv6.

gSOAP supports Zlib deflate and gzip compression (for HTTP, TCP/IP, and XML file stor-
age).

gSOAP supports SSL (HTTPS) using OpenSSL and optionally using GNUTLS.

gSOAP supports HTTP /1.0, HTTP/1.1 keep-alive, chunking, basic authentication, and digest
authentication using a plugin.

gSOAP supports SOAP one-way messaging.

The schema-specific XML pull parser is fast and efficient and does not require intermediate
data storage for demarshalling to save space and time.

The soapcpp2 compiler includes a WSDL and schema generator for convenient Web Service
publishing.

The soapcpp2 compiler generates sample input and output messages for verification and testing
(before writing any code). An option (-T) can be used to automatically implement echo
message services for testing.

The wsdI2h tool converts WSDL and XSD files to gSOAP header files for automated client
and server development.

Generates source code for stand-alone Web Services and client applications.

Ideal for small devices such as Palm OS, Symbian, Pocket PC, because the memory footprint
is small.

Ideal for building web services that are compute-intensive and are therefore best written in
C and C++.

Platform independent: Windows, Unix, Linux, Mac OS X, Pocket PC, Palm OS, Symbian,
VXWorks, etc.

Supports serializing of application’s native C and C++ data structures, which allows you to
save and load XML serialized data structures to and from files.

Selective input and output buffering is used to increase efficiency, but full message buffering
to determine HT'TP message length is not used. Instead, a three-phase serialization method is
used to determine message length. As a result, large data sets such as base64-encoded images

can be transmitted with or without DIME attachments by small-memory devices such as
PDAs.

18

e Supports C++ single class inheritance, dynamic binding, overloading, arbitrary pointer struc-
tures such as lists, trees, graphs, cyclic graphs, fixed-size arrays, (multi-dimensional) dy-
namic arrays, enumerations, built-in XSD Schema types including base64Binary encoding,
and hexBinary encoding.

e No need to rewrite existing C/C++ applications for Web service deployment. However, parts
of an application that use unions, pointers to sequences of elements in memory, and void* need
to be modified, but only if the data structures that adopt them are required to be serialized
or deserialized as part of a service operation invocation.

e Three-phase marshalling: 1) analysis of pointers, single-reference, multi-reference, and cyclic
data structures, 2) HTTP message-length determination, and 3) serialization as per SOAP
1.1 encoding style or user-defined encoding styles.

e Two-phase demarshalling: 1) SOAP parsing and decoding, which involves the reconstruction
of multi-reference and cyclic data structures from the payload, and 2) resolution of ” forward”
pointers (i.e. resolution of the forward href attributes in SOAP).

e Full and customizable SOAP Fault processing (client receive and service send).

e Customizable SOAP Header processing (send and receive), which for example enables easy
transaction processing for the service to keep state information.

2 Notational Conventions

The typographical conventions used by this document are:

Sans serif or italics font denotes C and C++ source code, file names, and shell/batch commands.
Bold font denotes C and C++ keywords.

Courier font denotes HTTP header content, HTML, XML, XML Schema content and WSDL
content.

[Optional] denotes an optional construct.

The keywords "MUST”, ”"MUST NOT”, "REQUIRED”, ”"SHALL”, ”SHALL NOT”, ”"SHOULD?”,
"SHOULD NOT”, " RECOMMENDED”, "MAY”, and "OPTIONAL” in this document are to be
interpreted as described in RFC-2119.

3 Differences Between gSOAP Versions 2.4 (and Earlier) and 2.5

To comply with WS-I Basic Profile 1.0a, gSOAP 2.5 and higher adopts SOAP document/literal
by default. There is no need for concern, because the WSDL parser wsdl2h automatically takes
care of the differences when you provide a WSDL document, because SOAP RPC encoding, literal,
and document style are supported. A new soapcpp2 compiler option was added -e for backward

19

compatibility with gSOAP 2.4 and earlier to adopt SOAP RPC encoding by default in case you
want to develop a service that uses SOAP encoding. You can also use the gSOAP soapcpp2 compiler
directives to specify SOAP encoding for individual operarations, when desired.

4 Differences Between gSOAP Versions 2.1 (and Earlier) and 2.2

You should read this section only if you are upgrading from gSOAP 2.1 to 2.2 and later.

Run-time options and flags have been changed to enable separate recv/send settings for transport,
content encodings, and mappings. The flags are divided into four classes: transport (I0), content
encoding (ENC), XML marshalling (XML), and C/C++ data mapping (C). The old-style flags
soap_disable_ X and soap_enable_X, where X is a particular feature, are deprecated. See Section 9.12
for more details.

5 Differences Between gSOAP Versions 1.X and 2.X

You should read this section only if you are upgrading from gSOAP 1.X to 2.X.

gSOAP versions 2.0 and later have been rewritten based on versions 1.X. gSOAP 2.0 and later is
thread-safe, while 1.X is not. All files in the gSOAP 2.X distribution are renamed to avoid confusion
with gSOAP version 1.X files:

gSOAP 1.X gSOAP 2.X

soapcpp soapcpp2
soapcpp.exe soapcpp2.exe
stdsoap.h stdsoap2.h
stdsoap.c stdsoap2.c

stdsoap.cpp stdsoap2.cpp

Changing the version 1.X application codes to accommodate gSOAP 2.X does not require a signif-
icant amount of recoding. The change to gSOAP 2.X affects all functions defined in stdsoap2.c[pp]
(the gSOAP runtime context API) and the functions in the sources generated by the gSOAP
soapcpp2 compiler (the gSOAP RPC-+marshalling API). Therefore, clients and services developed
with gSOAP 1.X need to be modified to accommodate a change in the calling convention used in
2.X: In 2.X, all gSOAP functions (including the service operation proxy routines) take an addi-
tional parameter which is an instance of the gSOAP runtime context that includes file descriptors,
tables, buffers, and flags. This additional parameter is always the first parameter of any gSOAP
function.

The gSOAP runtime context is stored in a struct soap type. A struct was chosen to support applica-
tion development in C without the need for a separate gSOAP implementation. An object-oriented
approach with a class for the gSOAP runtime context would have prohibited the implementation
of pure C applications. Before a client can invoke service operations or before a service can accept
requests, a runtime context needs to be allocated and initialized. Three new functions are added
to gSOAP 2.X:

20

Function

Description

soap-init(struct soap *soap) Initializes a context (required only once)

struct soap *soap_new() Allocates, initializes, and returns a pointer to a runtime
context

struct soap *soap_copy(struct soap *soap) Allocates a new runtime context and copies contents of the

context such that the new environment does not share any
data with the original context

A context can be reused as many times as necessary and does not need to be reinitialized in doing
so. A dynamically allocated context is deallocated with soap_free.

A new context is only required for each new thread to guarantee exclusive access to a new runtime
context by each thread. For example, the following code stack-allocates the runtime context which
is used for multiple service operation calls:

int main()

{

struct soap soap;

-s.(-)ap,init(&soap); // initialize runtime context
's.c;ap,call,ns,,methodl(&soap, ...); // make a remote call
-s.o-ap,call,ns,,method2(&soap, ...); // make another remote call
.s.c;ap,destroy(&soap); // remove deserialized class instances (C++ only)

soap_end(&soap); // clean up and remove deserialized data
soap_done(&soap); // detach context (last use and no longer in scope)

The runtime context can also be heap allocated:

int main()

{

struct soap *soap;

soap = soap_new(); // allocate and initialize runtime context
if (!soap) // couldn't allocate: stop

soap_call_ns__method1(soap, ...); // make a remote call
soap-_call_ns__method2(soap, ...); // make another remote call
soap-_destroy(soap); // remove deserialized class instances (C++ only)

soap_end(soap); // clean up and remove deserialized data
soap_free(soap); // detach and free runtime context

A service needs to allocate and initialize an context before calling soap_serve:

21

int main()

{

struct soap soap;
soap-init(&soap);
soap_serve(&soap);

}

Or alternatively:

int main()

{

soap_serve(soap_new());

}

The soap_serve dispatcher handles one request or multiple requests when HTTP keep-alive is enabled
(with the SOAP_IO_KEEPALIVE flag see Section 19.11).

A service can use multi-threading to handle requests while running some other code that invokes
service operations:

int main()

{

struct soap soapl, soap?;
pthread_t tid;

soap-init(&soapl);

if (soap_bind(&soapl, host, port, backlog) < 0) exit(1);

if (soap_accept(&soapl) < 0) exit(1);

pthread_create(&tid, NULL, (void*(*)(void*))soap_serve, (void*)&soapl);

soap-init(&soap2);
soap_call_ns__method(&soap2, ...); // make a remote call

soap_end(&soap?2);

pthread_join(tid, NULL); // wait for thread to terminate
soap_end(&soapl); // release its data

}

In the example above, two runtime contexts are required. In comparison, gSOAP 1.X statically
allocates the runtime context, which prohibits multi-threading (only one thread can invoke service
operations and/or accept requests due to the single runtime context).

Section 7.2.4 presents a multi-threaded stand-alone Web Service that handles multiple SOAP re-
quests by spawning a thread for each request.

6 Interoperability

gSOAP interoperability has been verified with the following SOAP implementations and toolkits:

22

Apache 2.2
Apache Axis
ASP.NET
Cape Connect
Delphi
easySOAP++
eSOAP
Frontier
GLUE

Tona XMLBus
kSOAP

MS SOAP
Phalanx

SIM
SOAP::Lite
SOAP4R
Spray
SQLData
WCF

White Mesa
xSOAP

ZS1

454C

7 Quick User Guide

This user guide offers a quick way to get started with gSOAP. This section requires a basic un-
derstanding of the SOAP protocol and some familiarity with C and/or C++. In principle, SOAP
clients and SOAP Web services can be developed in C and C++ with the gSOAP soapcpp2 compiler
without a detailed understanding of the SOAP protocol when gSOAP client-server applications are
built as an ensamble and only communicate within this group (i.e. meaning that you don’t have
to worry about interoperability with other SOAP implementations). This section is intended to
illustrate the implementation of gSOAP Web services and clients that connect to and interoperate
with other SOAP implementations such as Apache Axis, SOAP::Lite, and .NET. This requires
some details of the SOAP and WSDL protocols to be understood.

7.1 How to Build SOAP/XML Clients

In general, the implementation of a SOAP client application requires a stub (also called service
prozy) for each service operation that the client invokes. The primary stub’s responsibility is to
marshall the parameter data, send the request with the parameters to the designated SOAP service
over the wire, to wait for the response, and to demarshall the parameter data of the response when
it arrives. The client application invokes the stub routine for a service operation as if it would

23

invoke a local function. To write a stub routine in C or C++ by hand is a tedious task, especially
if the input and/or output parameters of a service operation contain elaborate data structures
such as objects, structs, containers, arrays, and pointer-linked graph structures. Fortunately, the
gSOAP wsdl2h WSDL parser tool and soapcpp2 stub/skeleton and serialization code generator tool
automate the development of SOAP /XML Web service client and server applications.

The soapcpp2 tool generates the necessary gluing code (also called stubs and skeletons) to build
web service clients and services. The input to the soapcpp2 tool consists of an service definition-
annotated C/C++ header file. The header file can be generated from a WSDL (Web Service
Description Language) documentation of a service with the gSOAP wsdl2h WSDL parser tool.

Consider the following command (entered at the Linux/Unix/Windows command line prompt):
> wsdI2h -o calc.h http://www.genivia.com/calc.wsdl

This generates the file Web service description calc.h in an annotated C++ header file. The WSDL
specification (possibly consisting of multiple imported WSDL files and XSD schema files) is mapped
to C++ using C++ databindings for SOAP/XML. The generated header file contains data types
and messages to operate the service, and meta information related to WSDL and XML schemas.

To generate a service definition header file to develop a pure C client application, use the -c option:

> wsdl2h -c -0 calc.h http://www.genivia.com/calc.wsdl

For more details on the WSDL parser and its options, see 8.

The service definition calc.h header file is further processed by the gSOAP soapcpp2 compiler to
generate the gluing code’s logic to invoke the Web service from a client.

Looking into the file calc.h we see that the SOAP service methods are specified as function pro-
totypes. For example, the add function to add two double floats:

int ns2__add(double a, double b, double& result);

The ns2__add function uses an XML namespace prefix to distinguish it from operations defined
in other namespaces, thus preventing name clashes. The convention to add an XML namespace
prefix to the names of operations, types, and struct and class members is universally used by the
gSOAP tools and automatically created by wsdI2h, but it is not mandatory when translating existing
C/C++ types and operations to web services. Thus, the prefix notation can be omitted from type
names defined in an header file with to run soapcpp2 to create clients and services that exchange
existing (i.e. application-native) data types.

These function prototypes are translated by the gSOAP soapcpp2 tool to stubs and proxies for
remote calls:

soapStub.h annotated copy of the input definitions
soapH.h serializers
soapC.cpp serializers

soapClient.cpp client calling stubs

Thus, the logic of the generated stub routines allow C and C++ client applications to seamlessly
interact with existing SOAP Web services as illustrated by the client code example in the next
section.

24

The input and output parameters of a SOAP service operation may be primitive data types or
complex compound data types such as containers and pointer-based linked data structures. These
are defined in the header file that is either generated by the WSDL parser or specified by hand.
The gSOAP soapcpp2 tool automatically generates XML serializers and XML deserializers for
the data types to enable the generated stub routines to encode and decode the contents of the
parameters of the service operations in SOAP/XML.

Note that the gSOAP soapcpp2 tool also generates skeleton routines soapServer.cpp for each of
the service operations specified in the header file. The skeleton routines can be readily used to
implement one or more of the service operations in a new SOAP Web service. These skeleton
routines are not used for building SOAP clients in C++, although they can be used to build mixed
SOAP client/server applications (peer applications).

7.1.1 Example

The add service operation (declared in the calc.h file obtained with the wsdI2h tool in the previous
section) adds two float values. The WSDL description of the service provides the endpoint to invoke
the service operations and the XML namespace used by the operations:

Endpoint URL: http://websrv.cs.fsu.edu/ engelen/calcserver.cgi
XML namespace: urn:calc

Each service operation has a SOAP action, which is an optional string to identify the operation
(mainly used with WS-Addressing), an operation request message and a response message. The re-
quest and response messages for SOAP RPC-encoded services are simply represented by C functions
with input and output parameters. For the add operation, the SOAP binding details are:

SOAP style: RPC
SOAP encoding: encoded
SOAP action: "' (empty string)

This information is translated to the wsdl2h-generated header file with the service definitions. The
calc.h header file for C++ generated by wsdl2h contains the following directives and declarations:
(the actual contents may vary depending on the release version and the options used to control the
output):

//gsoap ns2 service name: calc //gsoap ns2 service type: calcPortType //gsoap ns2 service port:
http://websrv.cs.fsu.edu/ engelen/calcserver.cgi
//gsoap ns2 service namespace: urn:calc

//gsoap ns2 service method-protocol: add SOAP

//gsoap ns2 service method-style: add rpc

//gsoap ns2 service method-encoding: add http://schemas.xmlsoap.org/soap/encoding/
//gsoap ns2 service method-action: add ""

int ns2__add(double a, double b, double& result);

The other calculator operations are similar and elided here for clarity.

25

The //gsoap directives are required for the soapcpp2 tool to generate code that is compliant to the
SOAP protocol. For this service the SOAP protocol with the common "RPC encoding style” is
used. For //gsoap directive details, see Section 19.2.

The service operations are declared as function prototypes, with all non-primitive parameter types
needed by the operation declared in the header file (all parameter types are primitive in this case).

The calculator add operation takes two double floats a and b, and returns the sum in result. By
convention, all parameters are input parameters except the last. The last parameter is
always the output parameter. A struct or class is used to wrap multiple output parameters, see
also Section 7.1.9. This last parameter must be a pointer or reference. By contrast, the input
parameters support pass by value or by pointer, but not pass by C++ reference.

The function prototype associated with a service operation always returns an int. The value indi-
cates success (0 or equivalently SOAP_OK) or failure (any nonzero value). See Section 10.2 for the
nonzero error codes.

The role of the namespace prefix (ns2__) in the service operation name in the function prototype
declaration is discussed in detail in 7.1.2. Basically, a namespace prefix is added to a function name
or type name with a pair of underscores, as in ns2__add, where ns2 is the namespace prefix and
add is the service operation name. This mechanism ensures uniqueness of operations and types
associated with a service.

It is strongly recommended to set the namespace prefix to a name of your choice. This avoids
problems when running wsdl2h on multiple WSDLs where the sequence of prefixes nsl, ns2, and so
on are arbitrarily assigned to the services. To choose a prefix name for all the operations and types
of a service, say prefix c__ for the calculator service, add the following line to typemap.dat:

¢ = "urn:calc"

and rerun wsdl2h. The typemap.dat configures wsdl2h to use specific bindings and data types for
services. The result is that c__add is used to uniquely identify the operation rather than the more
arbitrary name ns2__add.

Note on the use of underscores in names: a single underscore in an identifier name will be translated
into a dash in XML, because dashes are more frequently used in XML compared to underscores,
see Section 10.3.

Next, the gSOAP soapcpp2 tool is invoked from the command line to process the calc.h service
definitions:

> soapcpp?2 calc.h

The tool generates the stub routines for the service operations. Stub routines can be invoked by
a client program to invoke the remote service operations. The interface of the generated stub
routine is identical to the function prototype in the calc.h service defintion file, but with additional
parameters to pass the gSOAP engine’s runtime context soap, an endpoint URL (or NULL for the
default), and a SOAP action (or NULL for the default):

int soap_call_c__add(struct soap *soap, char *URL, char *action, double a, double b, double&
result);

26

This stub routine is saved in soapClient.cpp. The file soapC.cpp contains the serializer and deseri-
alizer routines for the data types used by the stub. You can use option -c for the soapcpp2 tool to
generate pure C code, when needed.

Note: the soap parameter must be a valid pointer to a gSOAP runtime context. The URL can be set
to override the default endpoint address (the endpoint defined by the WSDL). The action parameter
can be set to override the default SOAP action.

The following example C/C++ client program uses the stub:

#include "soapH.h" // include all interfaces (library and generated)
#include "calc.nsmap" // import the generated namespace mapping table
int main()
{
double sum;
struct soap soap; // the gSOAP runtime context
soap_init(&soap); // initialize the context (only once!)
if (soap_call_c__add(&soap, NULL, NULL, 1.0, 2.0, &sum) == SOAP_OK)
std::cout << "Sum =" << sum << std::endl;
else // an error occurred
soap_print_fault(&soap, stderr); // display the SOAP fault message on the stderr stream
soap_destroy(&soap); // delete deserialized class instances (for C++)
soap_end(&soap); // remove deserialized data and clean up
soap_done(&soap); // detach the gSOAP context
return 0;

}

The call returns SOAP_OK (zero) on success and a nonzero error on failure. When an error occurred
the fault is displayed with the soap_print_fault function. Use soap_sprint_fault(struct soap*, char *buf,
size_t len) to print the error to a string, and use soap_stream_fault(struct soap*, std::ostream&) to send
it to a stream (C++ only).

The following functions can be used to explicitly setup a gSOAP runtime context (struct soap):

27

Function

Description
soap-init(struct soap *soap) Initializes a runtime context
soap_init1(struct soap *soap, soap_mode iomode) Initializes a runtime context and

set in/out mode flags
soap-init2(struct soap *soap, soap_-mode imode, soap_-mode omode) Initializes a runtime context and
set in/out mode flags

struct soap *soap_new() Allocates, initializes, and returns
a pointer to a runtime context
struct soap *soap_newl(soap_mode iomode) Allocates, initializes, and returns

a pointer to a runtime context
and set in/out mode flags

struct soap *soap_new2(soap_mode imode, soap-mode omode) Allocates, initializes, and returns
a pointer to a runtime context
and set in/out mode flags

struct soap *soap_copy(struct soap *soap) Allocates a new runtime context
and copies a context (deep copy,
i.e. the new context does not
share any data with the other

context)
soap_done(struct soap *soap) Reset, close communications, and
remove callbacks
soap-free(struct soap *soap) Reset and deallocate the con-
text created with soap_new or
soap_copy

A runtime context can be reused as many times as necessary for client-side remote calls and does
not need to be reinitialized in doing so. A new context is required for each new thread to guarantee
exclusive access to runtime context by threads. Also the use of any client calls within an active
service method requires a new context.

The soapcpp2 code generator tool also generates a service proxy class for C++ client applications
(and service objects for server applications) with the -i (or -j) option:

> soapcpp?2 -i calc.h

The proxy is defined in:

soapcalcProxy.h client proxy class
soapcalcProxy.cpp client proxy class

Note: without the -i option only old-style service proxies and objects are generated, which are less
flexible and no longer recommended. Use -j as an alternative to -i to generate classes with the
same functionality, but that are not inherited from struct soap and use a pointer to a struct soap
engine context that can be shared with other proxy and service class instances. This choice is also
important when services are chained, see Section 7.2.8.

The generated C++ proxy class initializes the gSOAP runtime context and offers the service inter-
face as a collection of methods:

#include "soapcalcProxy.h" // get proxy
#include "calc.nsmap" // import the generated namespace mapping table

28

int main()

{
calcProxy calc(SOAP_XML_INDENT);
double sum;
if (calc.add(1.0, 2.0, sum) == SOAP_OK)
std::cout << "Sum =" << sum << std::endl;
else

calc.soap_stream_fault(std::cerr);
return calc.error; // nonzero when error

The proxy class is derived from the gSOAP runtime context structure struct soap and thus inher-
its (option -i) all state information of the runtime. The proxy constructor takes context mode
parameters to initialize the context, e.g. SOAP_XML_INDENT in this example.

The code is compiled and linked with soapcalcProxy.cpp, soapC.cpp, and stdsoap2.cpp (or use libg-
soap++.a).

The proxy class name is extracted from the WSDL content and may not always be in a short
format. Feel free to change the entry

//gsoap ns2 service name: calc

and rerun soapcpp2 to generate code that uses the new name.

When the example client application is invoked, a SOAP request is performed:

POST / engelen/calcserver.cgi HTTP/1.1
Host: websrv.cs.fsu.edu

User-Agent: gS0AP/2.7

Content-Type: text/xml; charset=utf-8
Content-Length: 464

Connection: close

SOAPAction: ""

<?xml version="1.0" encoding="UTF-8"7>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:c="urn:calc">
<SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<c:add>
<a>1
2
</c:add>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAP response message:

29

HTTP/1.1 200 OK

Date: Wed, 05 May 2010 16:02:21 GMT
Server: Apache/2.0.52 (Scientific Linux)
Content-Length: 463

Connection: close

Content-Type: text/xml; charset=utf-8

<?xml version="1.0" encoding="UTF-8"7>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns="urn:calc">
<SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<ns:addResponse>
<result>3</result>
</ns:addResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A client can invoke a sequence of service operations:

#include "soapcalcProxy.h" // get proxy
#include "calc.nsmap" // import the generated namespace mapping table
int main()

{

calcProxy calc(SOAP_IO_KEEPALIVE); // keep-alive improves connection performance
double sum = 0.0;
double val[]] = 5.0,3.5,7.1,1.2;
for (inti=0;i<4;i++)
if (calc.add(sum, val[i], sum))
return calc.error;
std::cout << "Sum =" << sum << std::endl;
return 0;
}

In the above, no data is deallocated until the proxy is deleted. To deallocate deserialized data
between the calls, use:

for (inti=0;i<4; i++)
if (calc.add(sum, val[i], sum))

return calc.error;
calc.destroy();

}

Deallocation is safe here, since the float values were copied and saved in sum. In other scenarios
one must make sure data is copied or removed from the deallocation chain with:

soap-unlink(struct soap *soap, const void *data)

30

which is to be invoked on each data item to be preserved, before destroying deallocated data. When
the proxy is deleted, also all deserialized data is deleted. To delegate deletion to another runtime
context for later removal, use:

soap_delegate_deletion(struct soap *soap_from, struct soap *soap_to)

For example

struct soap soap;
soap-init(&soap);
{ // create proxy
calcProxy calc;
... data generated ...
soap_delegate_deletion(&calc, &soap);
} // proxy deleted
... data used ...
soap_destroy(&soap);
soap-end(&soap);
soap_done(&soap);

In C (use wsdI2h -c) the example program would be written as:

#include "soapH.h"
#include "calc.nsmap"
int main()
{
struct soap soap;
double sum = 0.0;
double val[] = 5.0,35,7.1,1.2;
int i;
for (i=0;i <4 i++)
soap_init1(&soap, SOAP_IO_KEEPALIVE);
if (soap_call_c__add(&soap, NULL, NULL, sum, val[i], &sum))
return soap.error;
printf(" Sum = %lg\n", sum);
soap-end(&soap);
soap_done(&soap);
return O;

}

The code above is compiled and linked with soapClient.c, soapC.c, and stdsoap2.c (or use libgsoap.a).

7.1.2 XML Namespace Considerations

The declaration of the ns2__add function prototype (discussed in the previous section) uses the
namespace prefix ns2__ of the service operation namespace, which is distinguished by a pair of
underscores in the function name to separate the namespace prefix from the service operation
name. The purpose of a namespace prefix is to associate a service operation name with a service

31

in order to prevent naming conflicts, e.g. to distinguish identical service operation names used by
different services.

Note that the XML response of the service example uses a namespace prefix that may be
different (e.g. ns) as long as it bound to the same namespace name urn:calc through the
xmlns:ns="urn:calc binding. The use of namespace prefixes and namespace names is also re-
quired to enable SOAP applications to validate the content of SOAP messages. The namespace
name in the service response is verified by the stub routine by using the information supplied in a
namespace mapping table that is required to be part of gSOAP client and service application
codes. The table is accessed at run time to resolve namespace bindings, both by the generated
stub’s data structure serializer for encoding the client request and by the generated stub’s data
structure deserializer to decode and validate the service response. The namespace mapping table
should not be part of the header file input to the gSOAP soapcpp2 tool. Service details including
namespace bindings may be provided with gSOAP directives in a header file, see Section 19.2.

The namespace mapping table is:

struct Namespace namespaces|] =

{ /] {"ns-prefix', "ns-name” }
{"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/" }, // MUST be first
{"SOAP-ENC", "http://schemas.xmlsoap.org/soap/encoding/"}, // MUST be second
"xsi”, "http://www.w3.0rg/2001/XMLSchema-instance” }, // MUST be third
{"xsd", "http://www.w3.0rg/2001/XMLSchema" }, // 2001 XML Schema
{"ns2", "urn:calc" }, // given by the service description
{NULL, NULL} // end of table

+

The first four namespace entries in the table consist of the standard namespaces used by the SOAP
1.1 protocol. In fact, the namespace mapping table is explicitly declared to enable a programmer
to specify the SOAP encoding style and to allow the inclusion of namespace-prefix with namespace-
name bindings to comply to the namespace requirements of a specific SOAP service. For example,
the namespace prefix ns2, which is bound to urn:calc by the namespace mapping table shown above,
is used by the generated stub routine to encode the add request. This is performed automatically
by the gSOAP soapcpp2 tool by using the ns2 prefix of the ns2__add method name specified in the
calc.h header file. In general, if a function name of a service operation, struct name, class name,
enum name, or field name of a struct or class has a pair of underscores, the name has a namespace
prefix that must be defined in the namespace mapping table.

The namespace mapping table will be output as part of the SOAP Envelope by the stub routine.
For example:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:ns2="urn:calc"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

The namespace bindings will be used by a SOAP service to validate the SOAP request.

32

7.1.3 Example

The incorporation of namespace prefixes into C++ identifier names is necessary to distinguish
service operations that share the same name but are provided by separate Web services and/or
organizations. It avoids potential name clashes, while sticking to the C syntax. The C++ proxy
classes generated with soapcpp2 -i (or -j) drop the namespace prefix from the method names

The namespace prefix convention is also be applied to non-primitive types. For example, class
names are prefixed to avoid name clashes when the same name is used by multiple XML schemas.
This ensures that the XML databinding never suffers from conflicting schema content. For example:

class e_ _Address // an electronic address from schema 'e’

char *email;
char *url;
class s__Address // a street address from schema 's’
char *street;
int number;
char *city;

b
The namespace prefix is separated from the name of a data type by a pair of underscores (__).

An instance of e__Address is encoded by the generated serializer for this type as an Address element
with namespace prefix e:

<e:Address xsi:type="e:Address">
<email xsi:type="string">me@home</email>
<url xsi:type="string">www.me.com</url>
</e:Address>

While an instance of s__Address is encoded by the generated serializer for this type as an Address
element with namespace prefix s:

<s:Address xsi:type="s:Address">
<street xsi:type="string">Technology Drive</street>
<number xsi:type="int">5</number>
<city xsi:type="string">Softcity</city>
</s:Address>

The namespace mapping table of the client program must have entries for e and s that refer to the
XML Schemas of the data types:

struct Namespace namespaces|] =

{

nonoon

e”, "http://www.me.com/schemas/electronic-address"” },

{
Lo

s”, "http://www.me.com/schemas/street-address” },

This table is required to be part of the client application to allow access by the serializers and
deserializers of the data types at run time.

33

7.1.4 How to Generate C++ Client Proxy Classes

Proxy classes for C++ client applications are automatically generated by the gSOAP soapcpp2 tool,
as was shown in Section 7.1.1.

There is a new and improved code generation capability for proxy classes, which is activated with
the soapcpp2 -i (or j) option. These new proxy classes are derived from the soap structure, have a
cleaner interface and offer more capabilites.

With C++, you can also use wsdl2h option -qname to generate the proxy in a C++4 namespace
name. This is very useful if you want to create multiple proxies for services by repeated use of
wsdl2h and combine them in one code. Alternatively, you can run wsdl2h just once on all service
WSDLs and have soapcpp? generate multiple proxies for you. The latter approach does not use
C++ namespaces and may reduce the overall amount of code.

To illustrate the generation of a “standard” (old-style) proxy class, the calc.h header file example
of the previous section is augmented with the appropriate directives to enable the gSOAP soapcpp2
tool to generate the proxy class. Directives are included in the generated header file by the wsdI2h
WSDL importer:

// Content of file "calc.h":

//gsoap ns2 service name: calc

//gsoap ns2 service port: http://websrv.cs.fsu.edu/ engelen/calcserver.cgi
//gsoap ns2 service protocol: SOAP1.1

//gsoap ns2 service style: rpc

//gsoap ns2 service encoding: encoded

//gsoap ns2 service namespace: urn:calc

//gsoap ns2 service method-protocol: add SOAP
//gsoap ns2 service method-style: add rpc

//gsoap ns2 service method-encoding: add encoded
//gsoap ns2 service method-action: add "

int ns2__add(double a, double b, double& result);

//gsoap ns2 service method-protocol: sub SOAP
//gsoap ns2 service method-style: sub rpc

//gsoap ns2 service method-encoding: sub encoded
//gsoap ns2 service method-action: sub "

int ns2__sub(double a, double b, double& result);

//gsoap ns2 service method-protocol: mul SOAP
//gsoap ns2 service method-style: mul rpc

//gsoap ns2 service method-encoding: mul encoded
//gsoap ns2 service method-action: mul "

int ns2__mul(double a, double b, double& result);

The first three directives provide the service details, which is used to name the proxy class, the ser-
vice location port (endpoint), and the XML namespace. The subsequent groups of three directives
per method define the operation’s SOAP style (RPC) and encoding (SOAP encoded), and SOAP

34

action string. These directives can be provided for each service operation when the SOAPAction is
required, such as with SOAP1.1 RPC encoded and when WS-Addressing is used. In this example,
the service protocol is set by default for all operations to use SOAP 1.1 RPC encoding. For //gsoap
directive details, see Section 19.2.

The soapcpp2 tool takes this header file and generates a proxy soapcalcProxy.h with the following
contents (not using option -i):

#tinclude "soapH.h"
class calc
{ public:
struct soap *soap;
const char *endpoint;

cale() { ... };
“cale() { ... };

virtual int ns2__add(double a, double b, double& result) { return soap ? soap_call_ns2__add(soap,
endpoint, NULL, a, b, result) : SOAP_EOM; };

virtual int ns2__sub(double a, double b, double&: result) { return soap ? soap_call_ns2__sub(soap,
endpoint, NULL, a, b, result) : SOAP_EOM; };

virtual int ns2__mul(double a, double b, double& result) { return soap ? soap_call_ns2__mul(soap,
endpoint, NULL, a, b, result) : SOAP_EOM; };

.

The gSOAP context and endpoint are declared public to enable access.

This generated proxy class can be included into a client application together with the generated
namespace table as shown in this example:

#include "soapcalcProxy.h” // get proxy
#include "calc.nsmap” // get namespace bindings
int main()

{

calc s;

double r;

if (s.ns2__add(1.0, 2.0, r) == SOAP_OK)
std::cout << r << std::endl;

else
soap_print_fault(s.soap, stderr);

return 0;

}

The constructor allocates and initializes a gSOAP context for the instance.

You can use soapcpp2 option -n together with -p to create a local namespaces table to avoid link
conflicts when you need multiple namespace tables or need to combine multiple clients, see also
Sections 9.1 and 19.39, and you can use a C++ code namespace to create a namespace qualified
proxy class, see Section 19.38.

The soapcpp?2 -i option to generate proxy classes derived from the base soap structure. In addition,
these classes offer more functionality as illustrated in Section 7.1.1.

35

7.1.5 XSD Type Encoding Considerations

Many SOAP services require the explicit use of XML Schema types in the SOAP payload. The
default encoding, which is also adopted by the gSOAP soapcpp2 tool, assumes SOAP RPC encoding
which only requires the use of types to handle polymorphic cases. Nevertheless, the use of XSD
typed messages is advised to improve interoperability. XSD types are introduced with typedef
definitions in the header file input to the gSOAP soapcpp2 tool. The type name defined by a typedef
definition corresponds to an XML Schema type (XSD type). For example, the following typedef
declarations define various built-in XSD types implemented as primitive C/C++ types:

// Contents of header file:

typedef char *xsd__string; // encode xsd_ _string value as the xsd:string schema type

typedef char *xsd__anyURI; // encode xsd_ _anyURI value as the xsd:anyURI schema type
typedef float xsd_ _float; // encode xsd__float value as the xsd:float schema type

typedef long xsd__int; // encode xsd__int value as the xsd:int schema type

typedef bool xsd__boolean; // encode xsd__boolean value as the xsd:boolean schema type
typedef unsigned long long xsd__positivelnteger; // encode xsd__positivelnteger value as the
xsd:positiveInteger schema type

This easy-to-use mechanism informs the gSOAP soapcpp2 tool to generate serializers and deserial-
izers that explicitly encode and decode the primitive C++ types as built-in primitive XSD types
when the typedefed type is used in the parameter signature of a service operation (or when used
nested within structs, classes, and arrays). At the same time, the use of typedef does not force any
recoding of a C++ client or Web service application as the internal C++ types used by the appli-
cation are not required to be changed (but still have to be primitive C++ types, see Section 11.3.2
for alternative class implementations of primitive XSD types which allows for the marshalling of
polymorphic primitive types).

7.1.6 Example
Reconsider the calculator example, now rewritten with explicit XSD types to illustrate the effect:

// Contents of file "calc.h":
typedef double xsd__double;
int ns2__add(xsd_ _string a, xsd__double b, xsd__double &Result);

When processed by the gSOAP soapcpp2 tool it generates source code for the function soap_call_ns2_ _add,
which is identical to the C-style SOAP call:

int soap_call_ns2__add(struct soap *soap, char *URL, char *action, double a, double b, double&
result);

The client application does not need to be rewritten and can still call the proxy using the “old”
C-style function signatures. In contrast to the previous implementation of the stub however, the
encoding and decoding of the data types by the stub has been changed to explicitly use the XSD
types in the message payload.

36

For example, when the client application calls the proxy, the proxy produces a SOAP request with
an xsd:double (the xsi:type is shown when the soapcpp2 -t option is used):

<SOAP-ENV:Body>
<ns2:add>
<a xsi:type="xsd:string">1.0
<b xsi:type="xsd:string">2.0
</ns2:add>
</S0AP-ENV:Body>

The service response is:

<soap:Body>
<n:addResponse xmlns:n="urn:calc">
<result xsi:type="xsd:double">3.0</result>
</n:addResponse>
</soap:Body>

The validation of this service response by the stub routine takes place by matching the namespace
names (URIs) that are bound to the xsd namespace prefix. The stub also expects the addResponse
element to be associated with URI urn:calc through the binding of the namespace prefix ns2 in the
namespace mapping table. The service response uses namespace prefix n for the addResponse ele-
ment. This namespace prefix is bound to the same URI urn:calc and therefore the service response
is valid. When the XML is not well formed or does not pass validation, the response is rejected
and a SOAP fault is generated. The validation level can be increased with the SOAP_XML_STRICT
flag, but this is not advised for SOAP RPC encoded messaging.

7.1.7 How to Change the Response Element Name

There is no standardized convention for the response element name in a SOAP RPC encoded
response message, although it is recommended that the response element name is the method name
ending with “Response”. For example, the response element of add is addResponse.

The response element name can be specified explicitly using a struct or class declaration in the
header file. This name must be qualified by a namespace prefix, just as the operation name should
use a namespace prefix. The struct or class name represents the SOAP response element name used
by the service. Consequently, the output parameter of the service operation must be declared as a
field of the struct or class. The use of a struct or a class for the service response is fully SOAP 1.1
compliant. In fact, the absence of a struct or class indicates to the soapcpp2 tool to automatically
generate a struct for the response which is internally used by a stub.

7.1.8 Example

Reconsider the calculator service operation specification which can be rewritten with an explicit
declaration of a SOAP response element as follows:

37

// Contents of "calc.h”:

typedef double xsd__double;

struct ns2__addResponse {xsd__double result;};

int ns2__add(xsd_ _string a, xsd__double b, struct ns2__addResponse &r);

The SOAP request and response messages are the same as before:

<SOAP-ENV:Body>
<ns2:add>
<a xsi:type="xsd:string">1.0
<b xsi:type="xsd:string">2.0
</ns2:add>
</S0AP-ENV:Body>

The difference is that the service response is required to match the specified addResponse name and
its namespace URI:

<soap:Body>
<n:addResponse xmlns:n=’urn:calc’>
<result xsi:type="xsd:double">3.0</result>
</n:addResponse>
</soap:Body>

This use of a struct or class enables the adaptation of the default SOAP response element name
and/or namespace URI when required.

7.1.9 How to Specify Multiple Output Parameters

The gSOAP soapcpp2 tool compiler uses the convention that the last parameter of the func-
tion prototype declaration of a service operation in a header file is also the only single output
parameter of the method. All other parameters are considered input parameters of the service
operation. To specify a service operation with multiple output parameters, a struct or class
must be declared for the service operation response, see also 7.1.7. The name of the struct or class
must have a namespace prefix, just as the service method name. The fields of the struct or class
are the output parameters of the service operation. Both the order of the input parameters in
the function prototype and the order of the output parameters (the fields in the struct or class)
is not significant. However, the SOAP 1.1 specification states that input and output parameters
may be treated as having anonymous parameter names which requires a particular ordering, see
Section 7.1.13.

7.1.10 Example

As an example, consider a hypothetical service operation getNames with a single input parameter
SSN and two output parameters first and last. This can be specified as:

38

// Contents of file "getNames.h":
int ns3__getNames(char *SSN, struct ns3_ _getNamesResponse {char *first; char *last;} &r);

The gSOAP soapcpp2 tool takes this header file as input and generates source code for the function
soap_call_ns3__getNames. When invoked by a client application, the proxy produces the SOAP request:

<SOAP-ENV:Envelope ... xmlns:ns3="urn:names" ...>

<ns3:getNames>
<SSN>999 99 9999</SSN>
</ns3:getNames>

The response by a SOAP service could be:

<m:getNamesResponse xmlns:m="urn:names">
<first>John</first>

<last>Doe</last>

</m:getNamesResponse>

where first and last are the output parameters of the getNames service operation of the service.

As another example, consider a service operation copy with an input parameter and an output
parameter with identical parameter names (this is not prohibited by the SOAP 1.1 protocol). This
can be specified as well using a response struct:

// Content of file " copy.h”:
int X_rox__copy_name(char *name, struct X_rox__copy_nameResponse {char *name;} &r);

The use of a struct or class for the service operation response enables the declaration of service
operations that have parameters that are passed both as input and output parameters.

The gSOAP soapcpp2 compiler takes the copy.h header file as input and generates the soap_call_X_rox__copy_name
proxy. When invoked by a client application, the proxy produces the SOAP request:

<SOAP-ENV:Envelope ... xmlns:X-rox="urn:copy" ...>

<X-rox:copy-name>

<name>S0AP</name>
</X-rox:copy-name>

The response by a SOAP copy service could be something like:

<m:copy-nameResponse xmlns:m="urn:copy">
<name>S0AP</name>
</m:copy-nameResponse>

39

The name will be parsed and decoded by the proxy and returned in the name field of the struct
X_rox__copy_nameResponse &r parameter.

7.1.11 How to Specify Output Parameters With struct/class Compound Data Types

If the single output parameter of a service operation is a complex data type such as a struct or
class it is necessary to specify the response element of the service operation as a struct or class at
all times. Otherwise, the output parameter will be considered the response element (!), because
of the response element specification convention used by gSOAP, as discussed in 7.1.7.

7.1.12 Example

This is best illustrated with an example. The Flighttracker service by ObjectSpace provides real
time flight information for flights in the air. It requires an airline code and flight number as
parameters. The service operation name is getFlightInfo and the method has two string parameters:
the airline code and flight number, both of which must be encoded as xsd:string types. The method
returns a getFlightResponse response element with a return output parameter that is of complex type
Flightlnfo. The type FlightInfo is represented by a class in the header file, whose field names correspond
to the Flightlnfo accessors:

// Contents of file "flight.h":
typedef char *xsd_ string;
class ns2__Flightlnfo

{

public:

xsd_ _string airline;

xsd_ _string flightNumber;

xsd_ _string altitude;

xsd_ _string currentlLocation;

xsd__string equipment;

xsd__string speed;
b
struct nsl__getFlightInfoResponse {ns2__FlightInfo return_;};
int nsl__getFlightInfo(xsd_ _string param1, xsd_ _string param2, struct nsl__getFlightInfoResponse
&r);

The response element nsl__getFlightInfoResponse is explicitly declared and it has one field: return_ of
type ns2__FlightInfo. Note that return_has a trailing underscore to avoid a name clash with the return
keyword, see Section 10.3 for details on the translation of C++ identifiers to XML element names.

The gSOAP soapcpp2 compiler generates the soap_call_nsl__getFlightinfo proxy. Here is an example
fragment of a client application that uses this proxy to request flight information:

struct soap soap;
soap-init(&soap);

soap-call_nsl__getFlightInfo(&soap, "testvger.objectspace.com/soap/servliet/rpcrouter",

40

"urn:galdemo:flighttracker", "UAL", "184", r);

struct Namespace namespaces[] =

{
{"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/" },
{"SOAP-ENC"," http://schemas.xmlsoap.org/soap/encoding/" },
{"xsi", "http://www.w3.org/2001 /XMLSchema-instance” },
{"xsd", "http://www.w3.0rg/2001/XMLSchema" },
{"ns1”, "urn:galdemo:flighttracker” },
{"ns2", "http://galdemo.flighttracker.com" },
{NULL, NULL}

b
When invoked by a client application, the proxy produces the SOAP request:

POST /soap/servlet/rpcrouter HTTP/1.1
Host: testvger.objectspace.com
Content-Type: text/xml

Content-Length: 634

SO0APAction: '"urn:galdemo:flighttracker"

<?xml version="1.0" encoding="UTF-8"7>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:nsl="urn:galdemo:flighttracker"
xmlns:ns2="http://galdemo.flighttracker.com"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<nsl:getFlightInfo xsi:type="nsl:getFlightInfo">

<paraml xsi:type="xsd:string">UAL</paraml>

<param2 xsi:type="xsd:string">184</param2>

</nsl:getFlightInfo>

</SOAP-ENV:Body>

</S0AP-ENV:Envelope>

The Flighttracker service responds with:

HTTP/1.1 200 ok

Date: Thu, 30 Aug 2001 00:34:17 GMT

Server: IBM_HTTP Server/1.3.12.3 Apache/1.3.12 (Win32)
Set-Cookie: sesessionid=2GFVTOGC30DOLGRGU2L4HFA ;Path=/
Cache-Control: no-cache="set-cookie,set-cookie2"
Expires: Thu, 01 Dec 1994 16:00:00 GMT

Content-Length: 861

Content-Type: text/xml; charset=utf-8
Content-Language: en

<?xml version="1.0" encoding="UTF-8"7>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

41

xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<SOAP-ENV:Body>

<nsl:getFlightInfoResponse xmlns:nsl="urn:galdemo:flighttracker"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xmlns:ns2="http://galdemo.flighttracker.com" xsi:type="ns2:FlightInfo">

<equipment xsi:type="xsd:string">A320</equipment>

<airline xsi:type="xsd:string">UAL</airline>

<currentLocation xsi:type="xsd:string">188 mi W of Lincoln, NE</currentLocation>

<altitude xsi:type="xsd:string">37000</altitude>

<speed xsi:type="xsd:string">497</speed>

<flightNumber xsi:type="xsd:string">184</flightNumber>

</return>

</nsl:getFlightInfoResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The proxy returns the service response in variable r of type struct nsl__getFlightInfoResponse and this
information can be displayed by the client application with the following code fragment:

cout << r.return_.equipment << " flight " << r.return_.airline << r.return_.flightNumber
<< " traveling " << r.return_speed << " mph" << " at" << r.return_.altitude
<< " ft, is located " << r.return_.currentLocation << endl;

This code displays the service response as:

A320 flight UAL184 traveling 497 mph at 37000 ft, is located 188 mi W of Lincoln,
NE

Note: the flight tracker service is no longer available since 9/11/2001. It is kept in the documen-
tation as an example to illustrate the use of structs/classes and response types.

7.1.13 How to Specify Anonymous Parameter Names

The SOAP RPC encoding protocol allows parameter names to be anonymous. That is, the name(s)
of the output parameters of a service operation are not strictly required to match a client’s view
of the parameters names. Also, the input parameter names of a service operation are not strictly
required to match a service’s view of the parameter names. The gSOAP soapcpp2 compiler can
generate stub and skeleton routines that support anonymous parameters. Parameter names are
implicitly anonymous by omitting the parameter names in the function prototype of the service
operation. For example:

// Contents of "calc.h”:
typedef double xsd__double;
int ns2__add(xsd_ _string, xsd__double, xsd__double &);

To make parameter names explicitly anonymous on the receiving side (client or service), the pa-
rameter names should start with an underscore (_) in the function prototype in the header file.

For example:

42

// Contents of "calc.h”:
typedef double xsd__double;
int ns2__add(xsd- _string _a, xsd__double _b, xsd__double & _return);

In this example, the _a, b, and _return are anonymous parameters. As a consequence, the service
response to a request made by a client created with gSOAP using this header file specification may
include any name for the output parameter in the SOAP payload. The input parameters may also
be anonymous. This affects the implementation of Web services in gSOAP and the matching of
parameter names by the service.

Caution: when anonymous parameter names are used, the order of the parameters in the function
prototype of a service operation is significant.

7.1.14 How to Specify a Method with No Input Parameters

To specify a service operation that has no input parameters, just provide a function prototype with
one parameter which is the output parameter (some C/C++ compilers will not compile and com-
plain about an empty struct: use compile flag -DWITH_NOEMPTYSTRUCT to compile the generated
code for these cases). This struct is generated by gSOAP to contain the SOAP request message.
To fix this, provide one input parameter of type void* (gSOAP can not serialize void* data). For
example:

struct ns3__SOAPService
{

public:

int ID;

char *name;

char *owner;

char *description;

char *homepageURL;

char *endpoint;

char *SOAPAction;

char *methodNamespaceURI;

char *serviceStatus;

char *methodName;

char *dateCreated;

char *downloadURL;

char *wsdIURL;

char *instructions;

char *contactEmail;

char *servermplementation;
b
struct ArrayOfSOAPService {struct ns3_ _SOAPService *_ _ptr; int _ _size;};
int ns__getAlISOAPServices(void *_, struct ArrayOfSOAPService & _return);

The ns__getAlISOAPServices method has one void* input parameter which is ignored by the serializer
to produce the request message.

Most C/C++ compilers allow empty structs and therefore the void* parameter is not required.

43

7.1.15 How to Specify a Method with No Output Parameters

To specify a service operation that has no output parameters, just define a function prototype with
a response struct that is empty. For example:

enum ns__event { off, on, stand_by };
int ns__signal(enum ns__event in, struct ns__signalResponse { } *out);

Since the response struct is empty, no output parameters are specified.

Some SOAP resources refer to SOAP RPC with empty responses as one way SOAP messaging.
However, we refer to one-way massaging by asynchronous explicit send and receive operations as
described in Section 7.3. The latter view of one-way SOAP messaging is also in line with Basic
Profile 1.0.

7.2 How to Build SOAP/XML Web Services

The gSOAP soapcpp2 compiler generates skeleton routines in C++ source form for each of the
service operations specified as function prototypes in the header file processed by the gSOAP
soapcpp2 compiler. The skeleton routines can be readily used to implement the service operations
in a new SOAP Web service. The compound data types used by the input and output parameters of
service operations must be declared in the header file, such as structs, classes, arrays, and pointer-
based data structures (graphs) that are used as the data types of the parameters of a service
operation. The gSOAP soapcpp2 compiler automatically generates serializers and deserializers for
the data types to enable the generated skeleton routines to encode and decode the contents of
the parameters of the service operations. The gSOAP soapcpp2 compiler also generates a service
operation request dispatcher routine that will serve requests by calling the appropriate skeleton
when the SOAP service application is installed as a CGI application on a Web server.

7.2.1 Example

The following example specifies three service operations to be implemented by a new SOAP Web
service:

// Contents of file "calc.h":

typedef double xsd__double;

int ns__add(xsd__double a, xsd__double b, xsd__double &result);
int ns__sub(xsd__double a, xsd__double b, xsd_ _double &result);
int ns__sqrt(xsd_ _double a, xsd__double &result);

The add and sub methods are intended to add and subtract two double floating point numbers
stored in input parameters a and b and should return the result of the operation in the result output
parameter. The sqrt method is intended to take the square root of input parameter a and to return
the result in the output parameter result. The xsd__double type is recognized by the gSOAP soapcpp2
compiler as the xsd:double XSD Schema data type. The use of typedef is a convenient way to
associate primitive C types with primitive XML Schema data types.

44

To generate the skeleton routines, the gSOAP soapcpp2 compiler is invoked from the command line
with:

> soapcpp?2 calc.h

The compiler generates the skeleton routines for the add, sub, and sqrt service operations specified
in the calc.h header file. The skeleton routines are respectively, soap_serve_ns__add, soap_serve_ns_ _sub,
and soap_serve_ns__sqrt and saved in the file soapServer.cpp. The generated file soapC.cpp contains
serializers and deserializers for the skeleton. The compiler also generates a service dispatcher:
the soap_serve function handles client requests on the standard input stream and dispatches the
service operation requests to the appropriate skeletons to serve the requests. The skeleton in turn
calls the service operation implementation function. The function prototype of the service operation
implementation function is specified in the header file that is input to the gSOAP soapcpp2 compiler.

Here is an example Calculator service application that uses the generated soap_serve routine to
handle client requests:

// Contents of file " calc.cpp”:
#include "soapH.h"

#include <math.h> // for sqrt()
int main()

{
}

// Implementation of the "add” service operation:
int ns__add(struct soap *soap, double a, double b, double &result)

{

return soap_serve(soap_new()); // use the service operation request dispatcher

result = a + b;
return SOAP_OK;
}
// Implementation of the "sub" service operation:
int ns__sub(struct soap *soap, double a, double b, double &result)
{
result = a - b;
return SOAP_OK;

// Implementation of the "sqrt” service operation:
int ns__sqrt(struct soap *soap, double a, double &result)

{
if (a >=0)

result = sqrt(a);
return SOAP_OK;
}
else
return soap_receiver_fault(soap, " Square root of negative number”, "I can only take the square
root of a non-negative number");
¥
// As always, a namespace mapping table is needed:
struct Namespace namespaces|] =
{ /] {"ns-prefix', "ns-name” }

45

{"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/" },
{"SOAP-ENC", "http://schemas.xmlsoap.org/soap/encoding/" },
"xsi”, "http://www.w3.0rg /2001 /XMLSchema-instance” },
{"xsd", "http://www.w3.0rg/2001/XMLSchema" },

"ns", "urn:simple-calc” }, // bind "ns" namespace prefix

{NULL, NULL}
}

Note that the service operations have an extra input parameter which is a pointer to the gSOAP
runtime context. The implementation of the service operations MUST return a SOAP error code.
The code SOAP_OK denotes success, while SOAP_FAULT denotes an exception with details that can be
defined by the user. The exception description can be assigned to the soap—->fault—>faultstring string
and details can be assigned to the soap->fault->detail string. This is SOAP 1.1 specific. SOAP
1.2 requires the soap—>fault—->SOAP_ENV__Reason and the soap->fault->SOAP_ENV__Detail strings to
be assigned. Better is to use the soap_receiver_fault function that allocates a fault struct and sets
the SOAP Fault string and details regardless of the SOAP 1.1 or SOAP 1.2 version used. The
soap_receiver_fault function returns SOAP_FAULT, i.e. an application-specific fault. The fault exception
will be passed on to the client of this service.

This service application can be readily installed as a CGI application. The service description
would be:

Endpoint URL: the URL of the CGI application

SOAP action: 77 (2 quotes)

Remote method namespace: urn:simple-calc

Remote method name: add
Input parameters: a of type xsd:double and b of type xsd:double
Output parameter: result of type xsd:double

Remote method name: sub
Input parameters: a of type xsd:double and b of type xsd:double
Output parameter: result of type xsd:double

Remote method name: sqrt
Input parameter: a of type xsd:double
Output parameter: result of type xsd:double or a SOAP Fault

The soapcpp2 compile generates a WSDL file for this service, see Section 7.2.9.

Unless the CGI application inspects and checks the environment variable SOAPAction which contains
the SOAP action request by a client, the SOAP action is ignored by the CGI application. SOAP
actions are specific to the SOAP protocol and provide a means for routing requests and for security
reasons (e.g. firewall software can inspect SOAP action headers to grant or deny the SOAP request.
Note that this requires the SOAP service to check the SOAP action header as well to match it with
the service operation.)

The header file input to the gSOAP soapcpp2 compiler does not need to be modified to generate
client stubs for accessing this service. Client applications can be developed by using the same
header file as for which the service application was developed. For example, the soap_call_ns__add
stub routine is available from the soapClient.cpp file after invoking the gSOAP soapcpp2 compiler on
the calc.h header file. As a result, client and service applications can be developed without the need
to know the details of the SOAP encoding used.

46

7.2.2 MSVCH+ Builds

e Win32 builds need winsock2 (MS Visual C++ "ws2_32.1ib”) To do this in Visual C++ 6.0,
go to “Project”, “settings”, select the “Link” tab (the project file needs to be selected in the
file view) and add ”"ws2_32.lib” to the ”Object/library modules” entry.

e Use files with extension .cpp only (don’t mix .c with .cpp).
e Turn pre-compiled headers off.

e When creating a new project, you can specify a custom build step to automatically invoke
the gSOAP soapcpp2 compiler on a gSOAP header file. In this way you can incrementally
build a new service by adding new operations and data types to the header file. To specify
a custom build step, select the ”Project” menu item ”Settings” and select the header file in
the File view pane. Select the ”Custom Build” tab and enter ’soapcpp2.exe " $(inputPath)”’ in
the ”Command” pane. Enter ’soapStub.h soapH.h soapC.cpp soapClient.cpp soapServer.cpp’. Don’t
forget to add the soapXYZProxy.h soapXYZObject.h files that are generated for C++ class proxies
and server objects named XYZ. Click 7OK”. Run soapcpp2 once to generate these files (you
can simply do this by selecting your header file and select ”Compile”). Add the files to your
project. Each time you make a change to the header file, the project sources are updated
automatically.

e You may want to use the Winlnet interface available in the mod_gsoap directory of the gSOAP
package to simplify Internet access and deal with encryption, proxies, and authentication.
API instructions are included in the source.

e For the PocketPC, run the wsdi2h WSDL parser with option -s to prevent the generation of
STL code. In addition, time_t serialization is not supported, which means that you should add
the following line to typemap.dat indicating a mapping of xsd_ _dateTime to char*: xsd__dateTime
= | charx | char*.

7.2.3 How to Create a Stand-Alone Server

The deployment of a Web service as a CGI application is an easy means to provide your service
on the Internet. However, the performance of CGI is not great. Also, gSOAP services can be run
as stand-alone services on any port by utilizing the built-in HTTP and TCP/IP stacks. However,
the preferred mechanism to deploy a service is through an Apache module or IIS module. These
servers and modules are designed for server load balancing and access control.

To create a stand-alone service, only the main routine of the service needs to be modified as follows.
Instead of just calling the soap_serve routine, the main routine is changed into:

int main()
{
struct soap soap;
int m, s; // master and slave sockets
soap-init(&soap);
m = soap_bind(&soap, "machine.genivia.com", 18083, 100);
if (m < 0)

47

soap_print_fault(&soap, stderr);
else

fprintf(stderr, "Socket connection successful: master socket =

for (inti=1;;i++)

{
s = soap_accept(&soap);
if (s <0)

soap_print_fault(&soap, stderr);
break;

}

%d\n", m);

fprintf(stderr, "%d: accepted connection from IP=Yd.%d.%d.%d socket=%d", i,
(soap.ip>>24)&0xFF, (soap.ip>>16)&0xFF, (soap.ip>>8)&0xFF, soap.ip&0xFF, s);
if (soap_serve(&soap) = SOAP_OK) // process RPC request
soap_print_fault(&soap, stderr); // print error

fprintf(stderr, "request served\n");

soap_destroy(&soap); // clean up class instances
soap_end(&soap); // clean up everything and close socket

}
}

soap_done(&soap); // close master socket and detach context

}

The soap_serve dispatcher handles one request or multiple requests when HTTP keep-alive is enabled

(with the SOAP_IO_KEEPALIVE flag see Section 19.11).

The gSOAP functions that are frequently used for server-side coding are:

Function

Description

soap-new()
soap-init(struct soap *soap)

soap_bind(struct soap *soap, char *host, int port,
int backlog)

soap-accept(struct soap *soap)
soap-end(struct soap *soap)

soap_free_temp(struct soap *soap)
soap_destroy(struct soap *soap)

soap-done(struct soap *soap)

soap_free(struct soap *soap)

Allocates and Initializes gSOAP context
Initializes a stack-allocated gSOAP context (re-
quired once)

Returns master socket (backlog = max. queue size
for requests). When host==NULL: host is the ma-
chine on which the service runs

Returns slave socket

Clean up deserialized data (except class instances)
and temporary data

Clean up temporary data only

Clean up deserialized class instances (note: this
function will be renamed with option -n

Reset and detach context: close master/slave
sockets and remove callbacks

Detach and deallocate context (soap_new())

The host name in soap_bind may be NULL to indicate that the current host should be used.

The soap.accept_timeout context attribute of the gSOAP runtime context specifies the timeout value
for a non-blocking soap_accept(&soap) call. See Section 19.20 for more details on timeout manage-

ment.

48

See Section 9.13 for more details on memory management.

A client application connects to this stand-alone service with the endpoint machine.genivia.com:18083.
A client may use the http:// prefix. When absent, no HT'TP header is sent and no HTTP-based
information will be communicated to the service.

7.2.4 How to Create a Multi-Threaded Stand-Alone Service

Stand-alone multi-threading a Web Service is essential when the response times for handling re-
quests by the service are (potentially) long or when keep-alive is enabled, see Section 19.11. In case
of long response times, the latencies introduced by the unrelated requests may become prohibitive
for a successful deployment of a stand-alone service. When HTTP keep-alive is enabled, a client
may not close the socket on time, thereby preventing other clients from connecting.

However, the preferred mechanism to deploy a service is through an Apache module or IIS module.
These servers and modules are designed for server load balancing and access control.

The following example illustrates the use of threads to improve the quality of service by handling
new requests in separate threads:

#include "soapH.h"
#include <pthread.h>
#define BACKLOG (100) // Max. request backlog
int main(int argc, char **argv)
{
struct soap soap;
soap_init(&soap);
if (argc < 2) // no args: assume this is a CGI application

soap_serve(&soap); // serve request, one thread, CGl style
soap_destroy(&soap); // dealloc C++ data
soap-end(&soap); // dealloc data and clean up

}

else
{
soap.send_timeout = 10; // 10 seconds max socket delay
soap.recv_timeout = 10; // 10 seconds max socket delay
soap.accept_timeout = 3600; // server stops after 1 hour of inactivity
soap.max_keep_alive = 100; // max keep-alive sequence
void *process_request(void*);
struct soap *tsoap;
pthread_t tid;
int port = atoi(argv[1]); // first command-line arg is port
SOAP_SOCKET m, s;
m = soap_bind(&soap, NULL, port, BACKLOG);
if (!soap_valid_socket(m))
exit(1);
fprintf(stderr, "Socket connection successful %d\n", m);
for (;;)
{

s = soap_accept(&soap);

49

if (Isoap_valid_socket(s))
if (soap.errnum)

soap_print_fault(&soap, stderr);
exit(1);
}
fprintf(stderr, "server timed out\n");
break;
}
fprintf(stderr, "Thread %d accepts socket %d connection from IP %d.%d.%d.%d\n",
i, s, (soap.ip>>24)&0xFF, (soap.ip>>16)&0xFF, (soap.ip>>8)&0xFF, soap.ip&0xFF);
tsoap = soap_copy(&soap); // make a safe copy
if (!tsoap)
break;
pthread_create(&tid, NULL, (void*(*)(void*))process_request, (void*)tsoap);

}

soap_done(&soap); // detach soap struct
return 0;

}

void *process_request(void *soap)

{

pthread_detach(pthread_self());

soap_serve((struct soap*)soap);

soap_destroy((struct soap*)soap); // dealloc C++ data
soap_end((struct soap*)soap); // dealloc data and clean up
soap_done((struct soap*)soap); // detach soap struct
free(soap);

return NULL,;

}

Note: the code does not wait for threads to join the main thread upon program termination.

The soap_serve dispatcher handles one request or multiple requests when HTTP keep-alive is set
with SOAP_IO_KEEPALIVE. The soap.max_keep_alive value can be set to the maximum keep-alive calls
allowed, which is important to avoid a client from holding a thread indefinitely. The send and receive
timeouts are set to avoid (intentionally) slow clients from holding a socket connection too long. The
accept timeout is used to let the server terminate automatically after a period of inactivity.

The following example uses a pool of servers to limit the machine’s resource utilization:

#include "soapH.h"
#include <pthread.h>
#define BACKLOG (100) // Max. request backlog
#define MAX_THR (10) // Max. threads to serve requests
int main(int argc, char **argv)
{

struct soap soap;

soap-init(&soap);

if (argc < 2) // no args: assume this is a CGI application

50

soap_serve(&soap); // serve request, one thread, CGl style
soap_destroy(&soap); // dealloc C++ data
soap-end(&soap); // dealloc data and clean up

else

{

struct soap *soap_thrf[MAX_THR]; // each thread needs a runtime context
pthread_t tid[MAX_THR];
int port = atoi(argv[1]); // first command-line arg is port
SOAP_SOCKET m, s;
int i;
m = soap_bind(&soap, NULL, port, BACKLOG);
if (!soap-valid_socket(m))
exit(1);
fprintf(stderr, "Socket connection successful %d\n", m);
for (i = 0; i < MAX_THR; i++)
soap_thr[i] = NULL;
for (;;)

for (i = 0; i < MAX_THR; i++)
{

s = soap-accept(&soap);

if (!soap_valid_socket(s))

if (soap.errnum)

{

soap_print_fault(&soap, stderr);
continue; // retry

else

{

fprintf(stderr, "Server timed out\n");
break;

}
}

fprintf(stderr, "Thread %d accepts socket %d connection from IP %d.%d.%d.%d\n",
i, s, (soap.ip>>24)&0xFF, (soap.ip>>16)&0xFF, (soap.ip>>8)&0xFF, soap.ip&0xFF);
if (!soap_thr[i]) // first time around

soap-thr[i] = soap_copy(&soap);

if (!soap_thr[i])
exit(1); // could not allocate

else// recycle soap context
pthread_join(tid[i], NULL);
fprintf(stderr, " Thread %d completed\n", i);
soap_destroy(soap_thr[i]); // deallocate C++ data of old thread
soap_end(soap-thr[i]); // deallocate data of old thread

soap_thr[i]->socket ='s; // new socket fd

o1

pthread_create(&tid[i], NULL, (void*(*)(void*))soap_serve, (void*)soap_thr[i]);
}

}
for (i = 0; i < MAX_THR; i++)
if (soap_thr[i])

soap-done(soap_thr[i]); // detach context
free(soap_thrli]); // free up

}

return 0;

}

The following functions can be used to setup a gSOAP runtime context (struct soap):

Function Lo
Description

soap-init(struct soap *soap) Initializes a runtin

struct soap *soap_new() Allocates, initializ
context

struct soap *soap_copy(struct soap *soap) Allocates a new ru

copy, i.e. the new c
other context)

the argument context such that the new context does not share data with the argument context

soap-done(struct soap *soap) Reset, close comm

A new context is initiated for each thread to guarantee exclusive access to runtime contexts.

For clean termination of the server, the master socket can be closed and callbacks removed with
soap_done(struct soap *soap).

The advantage of the code shown above is that the machine cannot be overloaded with requests,
since the number of active services is limited. However, threads are still started and terminated.
This overhead can be eliminated using a queue of requests (open sockets) as is shown in the code
below.

#include "soapH.h"
#include <pthread.h>
#define BACKLOG (100) // Max. request backlog
#define MAX_THR (10) // Size of thread pool
#define MAX_QUEUE (1000) // Max. size of request queue
SOAP_SOCKET queue[MAX_QUEUE]; // The global request queue of sockets
int head = 0, tail = 0; // Queue head and tail
void *process_queue(void*);
int enqueue(SOAP_SOCKET);
SOAP_SOCKET dequeue();
pthread_mutex_t queue_cs;
pthread_cond_t queue_cv;
int main(int argc, char **argv)
{
struct soap soap;
soap_init(&soap);

52

if (argc < 2) // no args: assume this is a CGI application

{
soap_serve(&soap); // serve request, one thread, CGl style
soap_destroy(&soap); // dealloc C++ data
soap_end(&soap); // dealloc data and clean up

}

else
{
struct soap *soap_thr[MAX_THRY]; // each thread needs a runtime context
pthread_t tid[MAX_THR];
int port = atoi(argv[l]); // first command-line arg is port
SOAP_SOCKET m, s;
int i;
m = soap_bind(&soap, NULL, port, BACKLOG);
if (!soap_valid_socket(m))
exit(1);
fprintf(stderr, "Socket connection successful %d\n", m);
pthread_mutex_init(&queue_cs, NULL);
pthread_cond_init(&queue_cv, NULL);
for (i = 0; i < MAX_THR; i++)
{
soap_thr[i] = soap_copy(&soap);
fprintf(stderr, "Starting thread %d\n", i);
pthread_create(&tid[i], NULL, (void*(*)(void*))process_queue, (void*)soap_thr[i]);
}
for (;;)
{
s = soap_accept(&soap);
if (!soap_valid_socket(s))

{

if (soap.errnum)

{

soap_print_fault(&soap, stderr);
continue; // retry

}

else

{

fprintf(stderr, "Server timed out\n");
break;

}

fprintf(stderr, "Thread %d accepts socket %d connection from IP ¥%d.%d.%d.%d\n",
i, s, (soap.ip>>24)&0xFF, (soap.ip>>16)&0xFF, (soap.ip>>8)&0xFF, soap.ip&0xFF);
while (enqueue(s) == SOAP_EOM)
sleep(1);
}

for (i = 0; i < MAX_THR; i++)

while (enqueue(SOAP_INVALID_SOCKET) == SOAP_EOM)
sleep(1);

53

for (i = 0; i < MAX_THR; i++)
{
fprintf(stderr, "Waiting for thread %d to terminate... ", i);
pthread_join(tid[i], NULL);
fprintf(stderr, "terminated\n");
soap_done(soap-thr[i]);
free(soap_thrli]);
}
pthread_mutex_destroy(&queue_cs);
pthread_cond _destroy(&queue_cv);
}
soap_done(&soap);
return 0O;

}

void *process_queue(void *soap)

{

struct soap *tsoap = (struct soap*)soap;
for (;;)
{

tsoap->socket = dequeue();

if (!soap_valid_socket(tsoap->socket))

break;

soap_serve(tsoap);

soap_destroy(tsoap);

soap-_end(tsoap);

fprintf(stderr, "served\n");

}
return NULL;

}
int enqueue(SOAP_SOCKET sock)

{
int status = SOAP_OK;
int next;
pthread_mutex_lock(&queue_cs);
next = tail + 1;
if (next >= MAX_QUEUE)
next = 0;
if (next == head)
status = SOAP_EOM,;

else
queue[tail] = sock;
tail = next;

pthread_cond_signal(&queue_cv);

}

pthread_mutex_unlock(&queue_cs);
return status;

}
SOAP_SOCKET dequeue()

SOAP_SOCKET sock;

54

pthread_mutex_lock(&queue_cs);
while (head == tail)
pthread_cond_wait(&queue_cv, &queue_cs);
sock = queue[head++];
if (head >= MAX_QUEUE)
head = 0;
pthread_mutex_unlock(&queue_cs);
return sock;

Note: the plugin/threads.h and plugin/threads.c code can be used for a portable implementation.
Instead of POSIX calls, use MUTEX_LOCK, MUTEX_UNLOCK, and COND_WAIT. These are wrappers
for Win API calls or POSIX calls.

7.2.5 How to Pass Application Data to Service Methods

The void *soap.user field can be used to pass application data to service methods. This field should
be set before the soap_serve() call. The service method can access this field to use the application-
dependent data. The following example shows how a non-static database handle is initialized and
passed to the service methods:

struct soap soap;
database_handle_type database_handle;
soap-init(&soap); soap.user = (void*)database_handle;

soap_serve(&soap); // call the service operation dispatcher to handle request

}
int ns__myMethod(struct soap *soap, ...)
fetch((database_handle_type*)soap->user);
// get data ...
return SOAP_OK;
}

Another way to pass application data around in a more organized way is accomplished with plugins,
see Section 19.41.

7.2.6 Web Service Implementation Aspects

The same client header file specification issues apply to the specification and implementation of a
SOAP Web service. Refer to

e 7.1.2 for namespace considerations.

e 7.1.5 for an explanation on how to change the encoding of the primitive types.

95

7.1.7 for a discussion on how the response element format can be controlled.

7.1.9 for details on how to pass multiple output parameters from a service operation.

7.1.11 for passing complex data types as output parameters.

7.1.13 for anonymizing the input and output parameter names.

7.2.7 How to Generate C++ Server Object Classes

Server object classes for C++ server applications are automatically generated by the gSOAP
soapcpp2 compiler.

There are two modes for generating classes. Use soapcpp2 option -i (or -j) to generate improved
class definitions where the class’ member functions are the service methods.

The older examples (without the use of soapcpp2 option -i and -j) use a C-like approach with globally
defined service methods, which is illustated here with a calculator example:

// Content of file "calc.h":

//gsoap ns service name: Calculator

//gsoap ns service protocol: SOAP

//gsoap ns service style: rpc

//gsoap ns service encoding: encoded

//gsoap ns service location: http://www.cs.fsu.edu/~engelen/calc.cgi
//gsoap ns schema namespace: urn:calc

//gsoap ns service method-action: add ""

int ns__add(double a, double b, double &result);
int ns__sub(double a, double b, double &result);
int ns__mul(double a, double b, double &result);
int ns__div(double a, double b, double &result);

The first three directives provide the service name which is used to name the service class, the
service location (endpoint), and the schema. The fourth directive defines the optional SOAPAction
for the method, which is a string associated with SOAP 1.1 operations. Compilation of this header
file with soapcpp2 -i creates a new file soapCalculatorObject.h with the following contents:

#include "soapH.h"
class CalculatorObject : public soap
{ public:
Calculator() { ... };
“Calculator() { ... };
int serve() { return soap_serve(this); };

¥

This generated server object class can be included into a server application together with the
generated namespace table as shown in this example:

#include "soapCalculatorObject.h” // get server object
#include " Calculator.nsmap” // get namespace bindings

56

int main()

CalculatorObject c;
return c.serve(); // calls soap_serve to serve as CGl application (using stdin/out)

// C-style global functions implement server operations (soapcpp2 w/o option -i)
int ns__add(struct soap *soap, double a, double b, double &result)

{

result = a + b;
return SOAP_OK;

}

.. sub(), mul(), and div() implementations ...

You can use soapcpp2 option -n together with -p to create a local namespace table to avoid link
conflict when you need to combine multiple tables and/or multiple servers, see also Sections 9.1
and 19.39, and you can use a C++ code namespace to create a namespace qualified server object
class, see Section 19.38.

The example above serves requests over stdin/out. Use the bind and accept calls to create a
stand-alone server to service inbound requests over sockets, see also 7.2.3.

A Dbetter alternative is to use the soapcpp2 option -i. The C+4 proxy and server objects are
derived from the soap context struct, which simplifies the proxy invocation and service operation
implementations.

Compilation of the above header file with the gSOAP compiler soapcpp2 option -i creates new files
soapCalculatorService.h and soapCalculatorService.cpp (rather than the C-style soapServer.cpp).

This generated server object class can be included into a server application together with the
generated namespace table as shown in this example:

#include "soapCalculatorService.h” // get server object
#include " Calculator.nsmap” // get namespace bindings
int main()

{

soapCalculatorService c;
return c.serve(); // calls soap_serve to serve as CGl application (using stdin/out)

// The 'add’ service method (soapcpp2 w/ option -i)
int soapCalculatorService::add(double a, double b, double &result)

{

result = a + b;
return SOAP_OK;

.. sub(), mul(), and div() implementations ...
Note that the service operation does not need a prefix (ns__) and there is no soap context struct

passed to the service operation since the service object itself is the context (it is derived from the
soap struct).

57

7.2.8 How to Chain C++ Server Classes to Accept Messages on the Same Port

When combining multiple services into one application, you can run wsdl2h on multiple WSDLs to
generate the single all-inclusive service definitions header file. This header file is then processed
with soapcpp2, for example to generate server class objects with option -i and -q to separate the
service codes with C++ namespaces, see Section 19.38.

This works well, but the problem is that we end up with multiple classes, each for a collection of
service operations the class is supposed to implement. But what if we need to provide one endpoint
port for all services and operations? In this case invoking the server object’s serve method is not
sufficient, since only one service can accept requests while we want multiple services to listen to
the same port.

The approach is to chain the service dispatchers, as shown below:

#include " AbcABCService.h”

#include " UvwUVWService.h”

#include " XyzXYZService.h"

#include "envH.h"” // include this file last, if this file is needed

Abc::soapABCService abc; // generated with soapcpp?2 -i -S -qAbc
Uvw::soapUVWService uvw; // generated with soapcpp2 -i -S -qUvw
Xyz::soapXYZService xyz; // generated with soapcpp2 -i -S -qXyz

abc.bind(NULL, 8080, 100);

abc.accept();
// when using SSL: ssl_accept(&abc);

if (soap_begin_serve(&abc)) // available in 2.8.2 and later
abc.soap_stream_fault(std::cerr);

else if (abc.dispatch() == SOAP_NO_METHOD)

{
soap_copy_stream(&uvw, &abc);

soap_free_stream(&abc); // abc no longer uses this stream
if (uvw.dispatch() == SOAP_NO_METHOD)

soap_copy_stream(&xyz, &uvw);
soap-free_stream(&uvw); // uvw no longer uses this stream
if (xyz.dispatch())

soap_send_fault(&xyz); // send fault to client
xyz.soap_stream _fault(std::cerr);

}

xyz.destroy();

}

else

soap_send_fault(&uvw); // send fault to client
uvw.soap_stream _fault(std::cerr);

}

58

uvw.destroy();

}

else
abc.soap_stream_fault(std::cerr);
abc.destroy();

The dispatch method parses the SOAP /XML request and invokes the service operations, unless there
is no matching operation and SOAP_NO_METHOD is returned. The soap_copy_stream ensures that the
service object uses the currently open socket. The copied streams are freed with soap_free_stream. Do
not enable keep-alive support, as the socket may stay open indefinitely afterwards as a consequence.
Also, the dispatch method does not send a fault to the client, which has to be explicitly done with
the soap_send_fault operation when an error occurs.

In this way, multiple services can be chained to accept messages on the same port. This approach
also works with SSL for HT'TPS services.

However, this approach is not recommended for certain plugins, because plugins must be registered
with all service objects and some plugins require state information to be used across the service
objects, which will add significantly to the complexity.

When plugin complications arise, it is best to have all services share the same context. This means
that soapcpp2 option -j should be used instead of option -i. Each service class has a pointer member
to a soap struct context. This member pointer should point to the same soap context.

With option -j and -q the code to chain the services is as follows, based on a single struct soap engine
context:

#include " AbcABCService.h”

#include " UvwUVWService.h”

#include " XyzXYZService.h"

#include "envH.h" // include this file last, if it is needed

struct soap *soap = soap_new();

Abc::soapABCService abc(soap); // generated with soapcpp2 -j -S -qAbc
Uvw::soapUVWService uvw(soap); // generated with soapcpp2 -j -S -qUvw
Xyz::s0apXYZService xyz(soap); // generated with soapcpp?2 -j -S -qXyz

soap_bind(soap, NULL, 8080, 100);
soap_accept(soap);
if (soap_begin_serve(soap))

... error
else if (abc.dispatch() == SOAP_NO_METHOD)
{

if (uvw.dispatch() == SOAP_NO_METHOD)

if (xyz.dispatch() == SOAP,NO,METHOD)
.. error

}

}

soap_destroy(soap);
soap-end(soap);

59

soap_free(soap); // only safe when abc, uvw, xyz are also deleted

7.2.9 How to Generate WSDL Service Descriptions

The gSOAP stub and skeleton compiler soapcpp2 generates WSDL (Web Service Description Lan-
guage) service descriptions and XML Schema files when processing a header file. The tool produces
one WSDL file for a set of service operations, which must be provided. The names of the function
prototypes of the service operations must use the same namespace prefix and the namespace prefix
is used to name the WSDL file. If multiple namespace prefixes are used to define service operations,
multiple WSDL files will be created and each file describes the set of service operations belonging
to a namespace prefix.

In addition to the generation of the ns.wsdl file, a file with a namespace mapping table is generated
by the gSOAP compiler. An example mapping table is shown below:

struct Namespace namespaces|] =

{

{"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/" },
{"SOAP-ENC", "http://schemas.xmlsoap.org/soap/encoding/" },
"xsi", " http://www.w3.0rg/2001/XMLSchema-instance”, http://www.w3.org/* /XMLSchema-
instance" },)
{"xsd", "http://www.w3.0rg/2001/XMLSchema", http://www.w3.org/* /XMLSchema"},
{"ns", "http://tempuri.org" },
{NULL, NULL}
h

This file can be incorporated in the client/service application, see Section 10.4 for details on names-
pace mapping tables.

To deploy a Web service, copy the compiled CGI service application to the designated CGI direc-
tory of your Web server. Make sure the proper file permissions are set (chmod 755 calc.cgi for
Unix/Linux). You can then publish the WSDL file on the Web by placing it in the appropriate
Web server directory.

The gSOAP soapcpp2 compiler also generates XML Schema files for all C/C++ complex types
(e.g. structs and classes) when declared with a namespace prefix. These files are named ns.xsd,
where ns is the namespace prefix used in the declaration of the complex type. The XML Schema
files do not have to be published as the WSDL file already contains the appropriate XML Schema
definitions.

To customize the WSDL output, it is essential to use //gsoap directives to declare the service name,
the endpoint port, and namespace:

//gsoap ns service name: example
//gsoap ns servire port: http://www.mydomain.com/example
//gsoap ns service namespace: urn:example

These are minimal settings. More details and settings for the service operations should be declared
as well. See Section 19.2 for more details.

60

7.2.10 Example
For example, suppose the following methods are defined in the header file:

typedef double xsd__double;

int ns__add(xsd__double a, xsd__double b, xsd__double &result);
int ns__sub(xsd__double a, xsd__double b, xsd__double &result);
int ns__sqrt(xsd- _double a, xsd__double &result);

Then, one WSDL file will be created with the file name ns.wsdl that describes all three service
operations:

<7xml version="1.0" encoding="UTF-8"7>
<definitions name="Service"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://location/Service.wsdl"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SO0AP="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:WSDL="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2000/10/XMLSchema"
xmlns:tns="http://location/Service.wsdl"
xmlns:ns="http://tempuri.org">
<types>
<schema
xmlns="http://www.w3.0rg/2000/10/XMLSchema"
targetNamespace="http://tempuri.org"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<complexType name="addResponse">
<all>
<element name="result" type="double" minOccurs="0" maxOccurs="1"/>
</all>
<anyAttribute namespace="##other"/>
</complexType>
<complexType name="subResponse">
<all>
<element name="result" type="double" minOccurs="0" maxOccurs="1"/>
</all>
<anyAttribute namespace="##other"/>
</complexType>
<complexType name="sqrtResponse">
<all>
<element name="result" type="double" minOccurs="0" maxOccurs="1"/>
</all>
<anyAttribute namespace="##other"/>
</complexType>
</schema>
</types>
<message name="addRequest">

61

<part name="a" type="xsd:double"/>
<part name="b" type="xsd:double"/>
</message>
<message name="addResponse'">
<part name="result" type="xsd:double"/>
</message>
<message name="subRequest">
<part name="a" type="xsd:double"/>
<part name="b" type="xsd:double"/>
</message>
<message name="subResponse">
<part name="result" type="xsd:double"/>
</message>
<message name="sqrtRequest">
<part name="a" type="xsd:double"/>
</message>
<message name="sqrtResponse">
<part name="result" type="xsd:double"/>
</message>
<portType name="ServicePortType">
<operation name="add">
<input message="tns:addRequest"/>
<output message="tns:addResponse"/>
</operation>
<operation name="sub">
<input message="tns:subRequest"/>
<output message="tns:subResponse"/>
</operation>
<operation name="sqrt">
<input message="tns:sqrtRequest"/>
<output message="tns:sqrtResponse"/>
</operation>
</portType>
<binding name="ServiceBinding" type="tns:ServicePortType">
<SO0AP:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="add">
<SOAP:operation soapAction="http://tempuri.orgi#add"/>
<input>
<S0AP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<SO0AP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="sub">
<SOAP:operation soapAction="http://tempuri.orgi#sub"/>
<input>
<S0AP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

62

</input>
<output>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="sqrt">
<SOAP:operation soapAction="http://tempuri.org#sqrt"/>
<input>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
</binding>
<service name="Service">
<port name="ServicePort" binding="tns:ServiceBinding">
<SOAP:address location="http://location/Service.cgi"/>
</port>
</service>
</definitions>

The above uses all default settings for the service name, port, and namespace which should be set
in the header file with //gsoap directives (Section 19.2).

7.2.11 How to Use Client Functionalities Within a Service

A gSOAP service implemented with CGI may make direct client calls to other services from within
its service operations, without setting up a new context. A stand-alone service application must
setup a new soap struct context, e.g. using soap_copy and delete it after the call.

The server-side client call is best illustrated with an example. The following example is a more
sophisticated example that combines the functionality of two Web services into one new SOAP Web
service. The service provides a currency-converted stock quote. To serve a request, the service in
turn requests the stock quote and the currency-exchange rate from two XMethods services (these
services are no longer available by XMethods, but are used here as an example).

In addition to being a client of two XMethods services, this service application can also be used as a
client of itself to test the implementation. As a client invoked from the command-line, it will return
a currency-converted stock quote by connecting to a copy of itself installed as a CGI application
on the Web to retrieve the quote after which it will print the quote on the terminal.

The header file input to the gSOAP soapcpp2 compiler is given below. The example is for illustrative
purposes only (the XMethods services are not operational):

// Contents of file "quotex.h”:
int ns1__getQuote(char *symbol, float &result); // XMethods delayed stock quote service service

63

operation

int ns2__getRate(char *countryl, char *country2, float &result); // XMethods currency-exchange
service service operation

int ns3__getQuote(char *symbol, char *country, float &result); // the new currency-converted
stock quote service

The quotex.cpp client/service application source is:

// Contents of file " quotex.cpp”:

#include "soapH.h" // include generated proxy and SOAP support
int main(int argc, char **argv)

{

struct soap soap;

float q;
soap-init(&soap);
if (argec <= 2)

soap_serve(&soap);
else if (soap_call_ns3__getQuote(&soap, "http://www.cs.fsu.edu/\symbol{126}engelen/quotex.cgi",

", argv[1], argv[2], q))
soap_print_fault(&soap, stderr);

else
printf("\nCompany %s: %f (%s)\n", argv[l], q, argv[2]);
return 0;
}
int ns3__getQuote(struct soap *soap, char *symbol, char *country, float &result)
{
float q, r;
int socket = soap->socket; // save socket (stand-alone service only, does not support keep-alive)
if (soap_call_nsl__getQuote(soap, "http://services.xmethods.net/soap", "", symbol, &q)
==0&&
soap_call_ns2__getRate(soap, "http://services.xmethods.net/soap", NULL, "us", coun-
try, &r) == 0)

result = g*r;
soap->socket = socket;
return SOAP_OK;
¥
soap->socket = socket;
return SOAP_FAULT; // pass soap fault messages on to the client of this app
¥
/* Since this app is a combined client-server, it is put together with
one header file that describes all service operations. However, as a consequence we
have to implement the methods that are not ours. Since these implementations are
never called (this code is client-side), we can make them dummies as below.
/
int nsl__getQuote(struct soap *soap, char *symbol, float &result)
{ return SOAP_NO_METHOD; } // dummy: will never be called
int ns2__getRate(struct soap *soap, char *countryl, char *country2, float &result)
{ return SOAP_NO_METHOD; } // dummy: will never be called

64

struct Namespace namespaces|] =

{"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/" },
{"SOAP-ENC", " http://schemas.xmlsoap.org/soap/encoding/" },
"xsi”, " http://www.w3.0rg/2001/XMLSchema-instance”, " http://www.w3.org/* /XMLSchema-
instance" },
{"xsd", "http://www.w3.0rg/2001 /XMLSchema", "http://www.w3.org/* /XMLSchema" },
{"nsl”, "urn:xmethods-delayed-quotes” },
{"ns2", "urn:xmethods-CurrencyExchange” },
{"ns3", "urn:quotex” },
{NULL, NULL}

I3
To compile:

> soapcpp2 quotex.h
> c++ -0 quotex.cgi quotex.cpp soapC.cpp soapClient.cpp soapServer.cpp stdsoap2.cpp -Isocket
-Ixnet -Insl

Note: under Linux and Mac OS X you can often omit the -1 libraries.

The quotex.cgi executable is installed as a CGI application on the Web by copying it in the designated
directory specific to your Web server. After this, the executable can also serve to test the service.
For example

> quotex.cgi IBM uk

returns the quote of IBM in uk pounds by communicating the request and response quote from
the CGI application. See http://xmethods.com/detail.html?id=5 for details on the currency
abbreviations.

When combining clients and service functionalities, it is required to use one header file input to the
compiler. As a consequence, however, stubs and skeletons are available for all service operations,
while the client part will only use the stubs and the service part will use the skeletons. Thus,
dummy implementations of the unused service operations need to be given which are never called.

Three WSDL files are created by gSOAP: ns1.wsdl, ns2.wsdl, and ns3.wsdl. Only the ns3.wsdl file
is required to be published as it contains the description of the combined service, while the others
are generated as a side-effect (and in case you want to develop these separate services).

7.3 Asynchronous One-Way Message Passing

SOAP RPC client-server interaction is synchronous: the client blocks until the server responds to
the request. gSOAP also supports asynchronous one-way message passing and the interoperable
synchronous one-way message passing over HT'TP. The two styles are similar, but only the latter is
interoperable and is compliant to Basic Profile 1.0. The interoperable synchronous one-way message
passing style over HT'TP is discussed in Section 7.4 below.

SOAP messaging routines are declared as function prototypes, just like service operations for SOAP
RPC. However, the output parameter is a void type to indicate the absence of a return value.

65

For example, the following header file specifies an event message for SOAP messaging:

int ns__event(int eventNo, void);

The gSOAP soapcpp2 tool generates the following functions in soapClient.cpp:

int soap_send_ns__event(struct soap *soap, const char URL, const char action, int event);
int soap_recv_ns__event(struct soap *soap, struct ns__event *dummy);

The soap_send_ns__event function transmits the message to the destination URL by opening a socket
and sending the SOAP encoded message. The socket will remain open after the send and has to
be closed with soap_closesock(). The open socket connection can also be used to obtain a service
response, e.g. with a soap_recv function call.

The soap_recv_ns__event function waits for a SOAP message on the currently open socket (soap.socket)
and fills the struct ns__event with the ns__event parameters (e.g. int eventNo). The struct ns__event is
automatically created by gSOAP and is a mirror image of the ns__event parameters:

struct ns_ _event
{ int eventNo;

}

The gSOAP generated soapServer.cpp code includes a skeleton routine to accept the message. (The
skeleton routine does not respond with a SOAP response message.)

int soap_serve_ns__event(struct soap *soap);

The skeleton routine calls the user-implemented ns__event(struct soap *soap, int eventNo) routine (note
the absence of the void parameter!).

As usual, the skeleton will be automatically called by the service operation request dispatcher that
handles both the service operation requests (RPCs) and messages:

int main()
{ soap_serve(soap_new());

}

int ns__event(struct soap *soap, int eventNo)

... // handle event
return SOAP_OK;

}

7.4 Implementing Synchronous One-Way Message Passing over HTTP

One-way SOAP message passing over HT'TP as defined by the SOAP specification and Basic Profile
1.0 is synchrounous, meaning that the server must respond with an HT'TP OK header (or HTTP
202 Accepted) and an empty body. To implement synchrounous one-way messaging, the same setup

66

for asynchrounous one-way messaing discussed in Section 7.3 is used, but with one simple addition
at the client and server side for HT'TP transfer.

At the server side, we have to return an empty HTTP OK response. Normally with one-way
messaging the gSOAP engine closes the socket when the service operation is finished, which is not
desirable for synchronous one-way message exchanges over HT'TP: an HTTP response should be
send. This is accomplished as follows. For each one-way operation implemented in C/C++, we
replace the return SOAP_OK with:

int ns__event(struct soap *soap, int eventNo)

... // handle event
return soap_send_empty_response(soap, SOAP_OK); // SOAP_OK: return HTTP 202 ACCEPTED

}

At the client side, the empty response header must be parsed as follows:

if (soap_send_ns__event(soap, eventNo) !|= SOAP_OK
|| soap_recv_empty_response(soap) = SOAP_OK)
soap_print_fault(soap, stderr);

The synchronous (and asynchronous) one-way messaging supports HTTP keep-alive and chunking.

Note: soap_send_empty_response returns the error code SOAP_STOP to force the engine to stop produc-
ing a response message after the service operation completed, which allows soap_send_empty_response
to be used with any service operation that should return HT'TP 202.

7.5 How to Use the SOAP Serializers and Deserializers to Save and Load Ap-
plication Data using XML Data Bindings

The gSOAP XML databindings for C and C++ allow a seamless integration of XML in C and
C++ applications. Data can be serialized in XML and vice versa. WSDL and XML schema files
can be converted to C or C++ definitions. C and C++ definitions can be translated to WSDL and
schemas to support legacy ANSI C applications for example.

Learn more about XML data binding for C and C++ with gSOAP by visiting the Developer
Center https://www.genivia.com/dev.html and the new and most up-to-date XML data binding
documentation https://www.genivia.com/doc/databinding/html.

7.5.1 Mapping XML Schema to C/C++ with wsdl2h

Command:

> wsdI2h [options] XSD and WSDL files ...

The WSDL 1.1 and 2.0 standards are supported. If you have trouble with WSDL 2.0 please
contact the author. The entire XML schema 1.1 standard is supported, except XPath expressions
and assertions. This covers all of the following schema components with their optional [attributes
| shown:

67

<xs:any [minOccurs, maxOccurs] >

<xs:anyAttribute>

<xs:all>

<xs:choice [minOccurs, maxOccurs] >

<xs:sequence [minOccurs, maxOccurs] >

<xs:group [name, ref] >

<xs:attributeGroup [name, ref] >

<xs:attribute [name, ref, type, use, default, fixed, form, wsdl:arrayType] >
<xs:element [name, ref, type, default, fixed, form, nillable, abstract,
substitutionGroup, minOccurs, maxOccurs] >

<xs:simpleType [name] >

<xs:complexType [name, abstract, mixed] >

The supported facets are:

<xs:enumeration>

<xs:simpleContent>

<xs:complexContent>

<xs:list>

<xs:extension>

<xs:restriction>

<xs:length>

<xs:minLength>

<xs:maxLength>

<xs:minInclusive> validated only for integer types
<xs:maxInclusive> validated only for integer types
<xs:minExclusive> validated only for integer types
<xs:maxExclusive> validated only for integer types
<xs:precision> maps to float/double with C formatted output
<xs:scale> maps to float/double with C formatted output
<xs:totalDigits> maps to float/double with C formatted output
<xs:fractionDigits> maps to float/double with C formatted output
<xs:pattern> not automatically validated, see note below
<xs:union> maps to string, content not validated

Other:

<xs:import>
<xs:include>
<xs:redefine>
<xs:override>
<xs:annotation>

All primitive XSD types are supported. A subset of the default type mappings is shown below.
User-defined mappings can be added to typemap.dat to let wsdi2h (re)map XSD types to C/C++

types.
xsd:string maps to string (char* wchar_t* std::string,std::wstring)

xsd:boolean maps to bool (C++) or enum xsd__boolean (C)
xsd:float maps to float

68

xsd:double maps to double

xsd:decimal maps to string, or use ”#import ”custom/decimal.h”
xsd:precisionDecimal maps to string

xsd:duration maps to string, or use "#import ”custom/duration.h”
xsd:dateTime maps to time_t, or use ”#import ”custom/struct_tm.h”
xsd:time maps to string

xsd:date maps to string

xsd:gYearMonth maps to string

xsd:gYear maps to string

xsd:gMonth maps to string

xsd:hexBinary maps to struct xsd-_hexBinary

xsd:base64Bianry maps to struct xsd. _base64Binary

xsd:anyURI maps to string

xsd:anyType maps to an XML string or DOM with wsdl2h -d
xsd:anyAtomicType maps to string

xsd:anySimpleType maps to string

xsd:QName maps to _-QName (string normalization rules apply)
xsd:NOTATION maps to string

Note: automatic validation of xs:pattern restricted content is possible with a hook to a regex
pattern matching engine, see the fsvalidate and fwvalidate callbacks in Section 19.7.

Note: string targets are defined in the typemap.dat file used by wsdl2h to map XSD types. This
allows the use of char*, wsha_t*, std::string, and std::wstring string types for all XSD types mapped
to strings.

All non-primitive XSD types are supported (with the default mapping shown):

xsd:normalizedString maps to string
xsd:token maps to string

xsd:language maps to string
xsd:IDREFS maps to string
xsd:ENTITIES maps to string
xsd:NMTOKEN maps to string
xsd:NMTOKENS maps to string

xsd:Name maps to string

xsd:NCName maps to string

xsd:ID maps to string

xsd:IDREF maps to string

xsd:ENTITY maps to string

xsd:integer maps to string
xsd:nonPositiveInteger maps to string
xsd:negativelnteger maps to string
xsd:long maps to LONG64

xsd:int maps to int

xsd:short maps to short

xsd:byte maps to byte
xsd:nonNegativeInteger maps to string
xsd:unsignedLong maps to ULONG64
xsd:unsignedInt maps to unsigned int
xsd:unsignedShort maps to unsigned short
xsd:unsignedByte maps to unsigned byte

69

xsd:positiveIlnteger maps to string
xsd:yearMonthDuration maps to string
xsd:dayTimeDuration maps to string
xsd:dateTimeStamp maps to string

There are several initialization flags to control XML serialization at runtime:

e XML validation is more stricly enforced with SOAP_XML_STRICT.
e XML namespaces are supported, unless disabled with SOAP_XML_IGNORENS.

XML exclusive canonicalization is enabled with SOAP_XML_CANONICAL.

XML default xmlns="..." namespace bindings are enforced with SOAP_XML_DEFAULTNS.
e XML is indented for enhanced readability with SOAP_XML_INDENT.

e XML xsi:nil for NULL elements is serialized with SOAP_XML_NIL.

Strict validation catches all structural XML validation violations. For primitive type values,
it depends on the C/C++ target type that XSD types are mapped to, to catch primitive value
content pattern violations. Primitive value content validation is performed on non-string types such
as numerical and time values. String values are not automatocally validated, unless a xs:pattern
is given and the fsvalidate and fwvalidate callbacks are implemented by the user. Alternatively,
deserialized string content can be checked at the application level.

To obtain C and/or C++ type definitions for XML schema components, run wsdl2h on the schemas
to generate a header file. This header file defines the C/C++ type representations of the XML
schema components. The header file is then processed by the soapcpp2 tool to generate the serializers
for these types. See Section 1.4 for an overview to use wsdI2h and soapcpp2 to map schemas to C/C++
types to obtain XML data bindings.

7.5.2 Mapping C/C++ to XML Schema with soapcpp2
To generate serialization code, execute:

> soapcpp?2 [options] header_file.h
The following C/C++ types are supported in the header file:

bool

enum, enum* (‘'enum*’ indicates serialized as a bitmask)

(unsigned) char, short, int, long, long long (also LONG64), size_t

float, double, longdouble(#import " custom/long_double.h")

std::string, std::wstring, char[], char*, wchar_t*

XML (a char* type to hold literal XML string content)

-QName (a char* type with normalized QName content of the form prefix:name)
struct, class (with single inheritance)

std::vector, std::list, std::deque, std::set (#import "import/stl.h")

70

union (requires preceding discriminant member field)

typedef

time_t

template<> class(requires begin(), end(), size(), and insert() methods)
void* (requires a preceding _ _type field to indicate the object pointed to)
struct xsd__hexBinary (special pre-defined type to hold binary content)
struct xsd_ _base64Binary (special pre-defined type to hold binary content)
struct tm (F#import " custom/struct_tm.h")

struct timeval (#import " custom/struct_timeval.h”)

pointers to any of the above (any pointer-linked structures are serializable, including cyclic graphs)
fixed-size arrays of all of the above

Additional features and C/C++ syntax requirements:

A header file should not include any code statements, only data type declarations.
Nested classes and nested types are unnested.

Use #import "file.h” instead of #include to import other header files. The #include and #define
directives are accepted, but deferred to the generated code.

C++ namespaces are supported (must cover entire header file content)

Optional DOM support can be used to store mixed content or literal XML content. Otherwise,
mixed content may be lost. Use soapcpp2 option -d for DOM support. Learn more about
the DOM API for C and C++ by visiting the Developer Center https://www.genivia.com/
doc/dom/html.

Types are denoted transient using the ’extern’ qualifier, which prevents serialization as de-
sired:

extern class name; // class 'name’ is not serialized
struct name { extern char *name; int num; }; // 'name’ is not serialized

Only public members of a class can be serialized:

class name { private: char *secret; }; // 'secret’ is not serialized

Types declared ”volatile” means that they are declared elsewhere in the project’s code base
and should not be redefined in the soapcpp2-generated code nor changed/augmented by the
soapcpp?2 tool:

volatile class name { ... }; // defined here just to generate the serializers

Classes and structs declared ”"mutable” means that they can be augmented with additional
members, rather than leading to a redefinition error:

mutable class name { int n; }; // class has a member 'n’

1 0

mutable class name { float x; }; // and also a member 'x

The SOAP_ENV_ Header struct is mutable as well as the SOAP_ENV__Fault, SOAP_ENV__Detail,
SOAP_ENV_ _Reason, and SOAP_ENV__Code structs.

71

e struct/class members are serialized as attributes when qualified with *Q’:

struct record { @char *name; int num; }; // attribute name, element num

e Strings with 8-bit content can hold ASCII (default) or UTF8. The latter is possible by
enabling the SOAP_C_UTFSTRING flag. When enabled, all std::string and char* strings MUST
contain UTFS.

The soapcpp2 tool generates serializers and deserializers for all wsdl2h-generated or user-defined
data structures that are specified in the header file input to the compiler. The serializers and
deserializers can be found in the generated soapC.cpp file. These serializers and deserializers can
be used separately by an application without the need to build a full client or service application.
This is useful for applications that need to save or export their data in XML or need to import or
load data stored in XML format.

7.5.3 Serializing C/C++ Data to XML

We assume that the wsdI2h tool was used to map XML schema types to C/C++ data types. The
soapcpp2 tool then generates the (de)serializers for the C/C++ types. You can also use soapcpp2
directly on a header file that declares annotated C/C++ data types to serialize.

The following context attributes can be set to control the destination and source for serialization
and deserialization:

Variable Description

int soap.socket socket file descriptor for input and output (or set to SOAP_INVALID_SOCKET)
ostream *soap.os C++ only: output stream used for send operations

constchar**soap.os C only: points to a string pointer to be set with the managed string content
istream *soap.is C++ only: input stream used for receive operations

constchar*soap.is C only: string with input to parse (this pointer advances)

int soap.sendfd when soap.socket=SOAP_INVALID_SOCKET, this fd is used for send operations
int soap.recvfd when soap.socket=SOAP_INVALID_SOCKET, this fd is used for receive operations

The following initializing and finalizing functions can be used:

Function Description

void soap_begin_send(struct soap*) start a send/write phase

int soap_end_send(struct soap*) flush the buffer

int soap_begin_recv(struct soap*) start a rec/read phase (if an HTTP header is present, parse it first)
int soap_end_recv(struct soap*) perform a id/href consistency check on deserialized data

These operations do not open or close the connections. The application should open and close
connections or files and set the soap.socket, soap.os or soap.sendfd, soap.is or soap.recvfd streams or
descriptors. When soap.socket<0 and none of the streams and descriptors are set, then the standard
input and output will be used.

The following options are available to control serialization:

soap-jencodingStyle = NULL; // to remove SOAP 1.1/1.2 encodingStyle
soap-mode(soap, SOAP_XML_TREE); // XML without id-ref (no cycles!)

72

soap_mode(soap, SOAP_XML_GRAPH); // XML with id-ref (including cycles)
soap-_set_namespaces(soap, struct Namespace *nsmap); //to set xmlns bindings

See also Section 9.12 to control the I/O buffering and content encoding such as compression and
DIME encoding.

We assume that the wsdl2h tool was used to map XML schema types to C/C++ data types. The
soapcpp2 tool then generates the (de)serializers for the C/C++ types.

To serialize data to an XML stream, two functions should be called to prepare for serialization of
the data and to send the data, respectively. The first function, soap_serialize, analyzes pointers and
determines if multi-references are required to encode the data and if cycles are present the object
graph. The second function, soap_put, produces the XML output on a stream.

The soap_serialize and soap_put (and both combined by soap_write) functions are statically generated
specific to a data type. For example, soap_serialize_float(&soap, &d) is called to serialize an float
value and soap_put_float(&soap, &d, "number’, NULL) is called to output the floating point value in
SOAP tagged with the name <number>. The soap_write_float(&soap, &d) conveniently combines the
initialization of output, writing the data, and finalizing the output.

To initialize data, the soap_default function of a data type can be used. For example, soap_default_float(&soap,
&d) initializes the float to 0.0. The soap_default functions are useful to initialize complex data types

such as arrays, structs, and class instances. Note that the soap_default functions do not need the
gSOAP runtime context as a first parameter.

The following table lists the type naming conventions used by gSOAP:

Type Type Name

char* string

wchar _t* wstring

char byte

bool bool

double double

int int

float float

long long

LONG64 LONG64 (Win32)

long long LONG64 (Unix/Linux)

short short

time_t time

unsigned char unsignedByte

unsigned int unsignedint

unsigned long unsignedLong

ULONG64 unsignedLONG64 (Win32)
unsigned long long unsignedLONG64 (Unix/Linux)
unsigned short unsignedShort

T[N] ArrayNOfType where Type is the type name of T
T* PointerToType where Type is the type name of T
struct Name Name o
class Name Name

enum Name Name

Consider for example the following C code with a declaration of p as a pointer to a struct ns__Person:

73

struct ns__Person { char *name; } *p;

To serialize p, its address is passed to the function soap_serialize_PointerTons_ _Person generated for this
type by the gSOAP soapcpp2 compiler:

soap_serialize_PointerTons__Person(&soap, &p);

The address of p is passed, so the serializer can determine whether p was already serialized and
to discover co-referenced objects and cycles in graph data structures that require SOAP encod-
ing with id-ref serialization. To generate the output, the address of p is passed to the function
soap_put_PointerTons_ _Person together with the name of an XML element and an optional type string
(to omit a type, use NULL):

soap_begin_send(&soap);
soap_put_PointerTons_ _Person(&soap, &p, " ns:element-name”, " ns:type-name");
soap-end_send(&soap);

or the shorthand for the above (without the xsi type):

soap_write_PointerTons_ _Person(&soap, &p);

This produces:

<ns:element-name xmlns:SOAP-ENV="..." xmlns:SOAP-ENC="..." xmlns:ns="..."
xsi:type="ns:type-name">

<name xsi:type="xsd:string">...</name>

</ns:element-name>

The serializer is initialized with the soap_begin_send(soap) function and closed with soap_end_send(soap).
All temporary data structures and data structures deserialized on the heap are destroyed with the
soap_destroy and soap_end functions (in this order).

The soap_done function should be used to reset the context, i.e. the last use of the context. To
detach and deallocate the context, use soap_free.

To remove the temporary data only and keep the deserialized data on the heap, use soap_free_temp.
Temporary data structures are only created if the encoded data uses pointers. Each pointer in
the encoded data has an internal hash table entry to determine all multi-reference parts and cyclic
parts of the complete data structure.

You can assign an output stream in C++ to soap.os and in C an output string soap.os, or a file
descriptor to soap.sendfd.

For example, to assign a file descriptor:

soap.sendfd = open(file, O_.RDWR|O_CREAT, S_IWUSR|S_IRUSR);
soap_serialize_PointerTons_ _Person(&soap, &p);
soap_begin_send(&soap);

soap_put_PointerTons_ _Person(&soap, &p, " ns:element-name”, "
soap-end_send(&soap);

ns:type-name”);

74

The above can be abbreviated to

soap.sendfd = open(file, O_RDWR|O_CREAT, S_IWUSR|S_IRUSR);
soap_write_PointerTons_ _Person(&soap, &p);

The soap_serialize function is optional. It MUST be used when the object graph contains cycles. It
MUST be called to preserve the logical coherence of pointer-based data structures, where pointers
may refer to co-referenced objects. By calling soap_serialize, data structures shared through pointers
are serialized only once and referenced in XML using id-refs attributes. The actual id-refs used
depend on the SOAP encoding. To turn off SOAP encoding, remove or avoid using the SOAP-ENV
and SOAP-ENC namespace bindings in the namespace table. In addition, the SOAP_XML_TREE and
SOAP_XML_GRAPH flags can be used to control the output by restricting serialization to XML trees
or by enabling multi-ref graph serialization with id-ref attribuation.

To save the data as an XML tree (with one root) without any id-ref attributes, use the SOAP_XML_TREE
flag. The data structure MUST NOT contain pointer-based cycles.

To preserve the exact structure of the data object graph and create XML with one root, use the
SOAP_XML_GRAPH output-mode flag (see Section 9.12). Use this flag and the soap_serialize function
to prepare the serialization of data with in-line id-ref attributes. Using the SOAP_XML_GRAPH flag
assures the preservation of the logical structure of the data

For example, to encode the contents of two variables varl and var2 that may share data through
pointer structures, the serializers are called before the output routines:

T1 varl;
T2 var2;
struct soap soap;

soap_init(&soap); // initialize

[soap_omode(&soap, flags);] // set output-mode flags (e.g. SOAP_ENC_PLAIN|SOAP_ENC_ZLIB)
soap-begin(&soap); // start new (de)serialization phase

soap_set_omode(&soap, SOAP_XML_GRAPH);

soap_serialize_Typel(&soap, &varl);

soap_serialize_Type2(&soap, &var2);

soap.socket = a,socket,fiIe,descriptor;] // when using sockets

soap.os = an_output_stream;| // C++

soap.sendfd = an_output_file_descriptor;] // C

soap_begin_send(&soap);

soap_put_Typel(&soap, &varl, " [namespace—prefix:]element—namel”, " [namespace—prefix:]type—namel”)

soap_put_Type2(&soap, &var2,” [namespace—prefix:]element—name2”, " [namespace—prefix:]type—name2”);

soap_end_send(&soap); // flush

soap_destroy(&soap); // remove deserialized C++ objects
soap-end(&soap); // remove deserialized data structures
soap_done(&soap); // finalize last use of this context

where Typel is the type name of T1 and Type2 is the type name of T2 (see table above). The
strings [namespace-prefix:]type-namel and [namespace-prefix:|type-name2 describe the schema types of the
elements. Use NULL to omit this type information.

75

For serializing class instances, method invocations MUST be used instead of function calls, for
example obj.soap_serialize(&soap) and obj.soap_put(&soap, "elt”, "type"). This ensures that the proper

serializers are used for serializing instances of derived classes.

You can serialize a class instance to a stream as follows:

struct soap soap;

myClass obj;

... populate obj

soap_init(&soap); // initialize

soap_begin(&soap); // start new (de)serialization phase
soap_set_omode(&soap, SOAP_XML_GRAPH);
obj.serialize(&soap);

soap.os = &cout; // send to cout
soap-begin_send(&soap);

obj.put(&soap, " [namespace—prefix:]element—namel”, " [namespace—prefix:]type—namel")
soap-end_send(&soap); // flush

soap_destroy(&soap); // remove deserialized C++ objects
soap-end(&soap); // remove deserialized data
soap_done(&soap); // finalize last use of this context

For gSOAP 2.8.28 and later, in C we use soapoés to obtain a string with the XML serialized data:

struct soap soap;

struct myClass obj;

constchar*out;

... populate obj

soap-init(&soap); // initialize

soap_begin(&soap); // start new (de)serialization phase
soap_set_omode(&soap, SOAP_XML_GRAPH);
soap_serialize(&soap, &obj);

soap.os = &out; // string to set
soap-begin_send(&soap);

soap_put(&soap, &obj, " [namespace—prefix:]element—namel”, " [namespace—prefix:]type—namel”);
soap-end_send(&soap); // flush

... // out has XML content string managed by context
soap.os = NULL; // stop sending to string

soap-end(&soap); // remove deserialized data
soap_done(&soap); // finalize last use of this context

When you declare a soap struct pointer as a data member in a class, you can overload the <<
operator to serialize the class to streams:

ostream &operator<<(ostream &o, const myClass &e)

if (le.soap)
. error: need a soap struct to serialize (could use global struct) ...
else

{

76

ostream *os = e.soap->o0s;
e.soap->0s = &o0;
soap_set_omode(e.soap, SOAP_XML_GRAPH); e.serialize(e.soap);
soap_begin_send(e.soap);
e.put(e.soap, "myClass”, NULL);
soap-end_send(e.soap);
€.50ap->05 = Os;
soap_clr_omode(e.soap, SOAP_XML_GRAPH);
}

return o;

}

Of course, when you construct an instance you must set its soap struct to a valid context. Deserial-
ized class instances with a soap struct data member will have their soap structs set automatically,
see Section 9.13.2.

In principle, XML output for a data structure can be produced with soap_put without calling the
soap_serialize function first. In this case, the result is similar to SOAP_XML_TREE which means that
no id-refs are output. Cycles in the data structure will crash the serialization algorithm, even when
the SOAP_XML_GRAPH is set.

Consider the following struct:

// Contents of file "tricky.h":
struct Tricky
{

int *p;

int n;

int *q;

b
The following fragment initializes the pointer fields p and q to the value of field n:

struct soap soap;
struct Tricky X;

X.n=1;
X.p = &X.n;
X.q = &X.n;

soap-init(&soap);

soap_begin(&soap);

soap_serialize_Tricky(&soap, &X);

soap_put_Tricky(&soap, &X, "Tricky", NULL);

soap-end(&soap); // Clean up temporary data used by the serializer

What is special about this data structure is that n is ’fixed’ in the Tricky structure, and p and q
both point to n. The gSOAP serializers strategically place the id-ref attributes such that n will be
identified as the primary data source, while p and q are serialized with ref/href attributes.

The resulting output is:
<Tricky xsi:type="Tricky">

<p href="#2"/> <n xsi:type="int">1</n> <q href="#2"/> <r xsi:type="int">2</r> </Tricky>
<id id="2" xsi:type="int">1</id>

77

which uses an independent element at the end to represent the multi-referenced integer, assuming
the SOAP-ENV and SOAP-ENC namespaces indicate SOAP 1.1 encoding.

With the SOAP_XML_GRAPH flag the output is:

<Tricky xsi:type="Tricky">
<p href="#2"/> <n id="2" xsi:type="int">1</n> <q href="#2"/> </Tricky>

In this case, the XML is self-contained and multi-referenced data is accurately serialized. The
gSOAP generated deserializer for this data type will be able to accurately reconstruct the data
from the XML (on the heap).

7.5.4 Deserializing C/C++ Data from XML

We assume that the wsdl2h tool was used to map XML schema types to C/C++ data types. The
soapcpp2 tool then generates the (de)serializers for the C/C++ types. You can also use soapcpp2
directly on a header file that declares annotated C/C++ data types to serialize.

To deserialize a data type from XML, the soap_get (or the simpler soap_read) function for the data
type to be deserialized is used. The outline of a program that deserializes two variables varl and
var2 is for example:

T1 varl;
T2 var2;
struct soap soap;

soap-init(&soap); // initialize at least once
[soap_imode(&soap, flags);| // set input-mode flags
soap_begin(&soap); // begin new decoding phase
soap.is = an_input_stream;| // C++
soap.recvfd = an_input_file_desriptpr;] // C
soap_begin_recv(&soap); // if HTTP/MIME/DIME/GZIP headers are present, parse them
if (!soap_get_Typel(&soap, &varl, " [namespace—prefix:]element—namel”, " [namespace—prefix:]type—
namel”))
.. error ...
if (!soap_get_Type2(&soap, &var2,” [namespace—prefix:]element—name2”, " [namespace—prefixz]type—
namel”))
.. error ...

soap_end_recv(&soap); // check consistency of id/hrefs
soap_destroy(&soap); // remove deserialized C++ objects
soap-end(&soap); // remove deserialized data
soap_done(&soap); // finalize last use of the context

The strings [namespace-prefix:|type-namel and [namespace-prefix:|type-name2 are the schema types of the
elements and should match the xsi:type attribute of the receiving message. To omit the match,
use NULL as the type. For class instances, method invocation can be used instead of a function call
if the object is already instantiated, i.e. obj.soap_get(&soap, "...", "..").

The soap_begin call resets the deserializers. The soap_destroy and soap_end calls remove the temporary
data structures and the decoded data that was placed on the heap.

78

To remove temporary data while retaining the deserialized data on the heap, the function soap_free_temp
should be called instead of soap_destroy and soap_end.

One call to the soap_get_Type function of a type Type scans the entire input to process its XML
content and to capture SOAP 1.1 independent elements (which contain multi-referenced objects).
As a result, soap.error will set to SOAP_EOF. Also storing multiple objects into one file will fail to
decode them properly with multiple soap_get calls. A well-formed XML document should only have
one root anyway, so don’t save multiple objects into one file. If you must save multiple objects,
create a linked list or an array of objects and save the linked list or array. You could use the
soap_in_Type function instead of the soap_get_Type function. The soap_in_Type function parses one
XML element at a time.

You can deserialize class instances from a stream as follows:

myClass obj;

struct soap soap;

soap_init(&soap); // initialize

soap.is = &cin; // read from cin

soap_begin_recv(&soap); // if HTTP header is present, parse it

if (soap_get-myClass(&soap, &obj, "myClass”, NULL) == NULL)
. error ...

soap-end_recv(&soap); // check consistency of id/hrefs

soap_destroy(&soap); // remove deserialized C++ objects
soap-end(&soap); // remove deserialized data
soap_done(&soap); // finalize last use of the context

This can be abbreviated to:

myClass obj;

struct soap soap;

soap_init(&soap); // initialize

soap.is = &cin; // read from cin

if (soap_read_myClass(&soap, &obj, NULL) != SOAP_OK)

.. €rror ...

soap_destroy(&soap); // remove deserialized C++ objects
soap_end(&soap); // remove deserialized data
soap_done(&soap); // finalize last use of the context

When declaring a soap struct pointer as a data member in a class, you can overload the >> operator
to parse and deserialize a class instance from a stream:

istream &operator>>(istream &i, myClass &e)
{
if (le.soap)
.. error: need soap struct to deserialize (could use global struct)...
istream *is = e.soap->is;
e.soap->is = &i;
if (soap_read_myClass(e.soap, &e) = SOAP_OK)
.. error ...

79

e.soap->is = is;
return i;

}

For gSOAP 2.8.28 and later, you can parse XML from strings as follows:

struct myClass obj;
struct soap soap;
soap-init(&soap); // initialize

soap.is = "..."; // this is the string with XML to parse
if (soap_read_myClass(&soap, &obj, NULL) != SOAP_OK)
. error ...

soap.is = NULL; // stop parsing from strings

soap-end(&soap); // remove deserialized data
soap_done(&soap); // finalize last use of the context

When declaring a soap struct pointer as a data member in a class, you can overload the >> operator
to parse and deserialize a class instance from a stream or string stream:

istream &operator>>(istream &i, myClass &e)
{
if (le.soap)
. error: need soap struct to deserialize (could use global struct)...
istream *is = e.soap->is;
e.soap->is = &i;
if (soap_read_myClass(e.soap, &e) !|= SOAP_OK)
.. error ...
e.soap—>is = is;
return i;

7.5.5 Example
As an example, consider the following data type declarations:

// Contents of file " person.h":
typedef char *xsd__string;
typedef char *xsd_ _Name;
typedef unsigned int xsd__unsignedint;
enum ns__Gender {male, female};
class ns__Address

{

public:

xsd_ _string street;

xsd_ _unsignedInt number;

xsd_ _string city;
5
class ns__Person

{

80

public:

xsd__Name name;

enum ns__Gender gender;
ns__Address address;
ns__Person *mother;

ns_ _Person *father;

¥

The following program uses these data types to write to standard output a data structure that
contains the data of a person named ”John” living at Downing st. 10 in Londen. He has a mother
"Mary” and a father ”Stuart”. After initialization, the class instance for ”John” is serialized and
encoded in XML to the standard output stream using gzip compression (requires the Zlib library,
compile sources with -DWITH_GZIP):

// Contents of file " person.cpp”:
#include "soapH.h"
int main()
{
struct soap soap;
ns__Person mother, father, john;

mother.name = "Mary";
mother.gender = female;
mother.address.street = "Downing st.";

mother.address.number = 10;
mother.address.city = "London";
mother.mother = NULL;
mother.father = NULL;

father.name = "Stuart";
father.gender = male;
father.address.street = "Main st.";
father.address.number = 5;
father.address.city = "London";
father.mother = NULL,;
father.father = NULL;

john.name = "John";

john.gender = male;

john.address = mother.address;
john.mother = &mother;
john.father = &father;
soap-init(&soap);
soap_omode(&soap, SOAP_ENC_ZLIB|SOAP_XML_GRAPH); // see 9.12
soap_begin(&soap);
soap_begin_send(&soap);
john.soap_serialize(&soap);
john.soap_put(&soap, "johnnie", NULL);
soap_end_send(&soap);
soap_destroy(&soap);
soap_end(&soap);
soap_done(&soap);

}

struct Namespace namespaces[] =

81

{"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/" },
{"SOAP-ENC" " http://schemas.xmlsoap.org/soap/encoding/" },
{"xsi", "http://www.w3.0rg/2001 /XMLSchema-instance” },

{"xsd", "http://www.w3.0rg/2001/XMLSchema" },

{"ns", "urn:person” }, // Namespace URI of the “Person” data type
{NULL, NULL}

b
The header file is processed and the application compiled on Linux/Unix with:

> soapcpp2 person.h
> c++ -DWITH_GZIP -o person person.cpp soapC.cpp stdsoap2.cpp -Isocket -Ixnet -Insl| -1z

(Depending on your system configuration, the libraries libsocket.a, libxnet.a, libnsl.a are required.
Compiling on Linux typically does not require the inclusion of those libraries.) See 19.29 for details
on compression with gSOAP.

Running the person application results in the compressed XML output:

<johnnie xsi:type="ns:Person" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:ns="urn:person"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<name xsi:type="xsd:Name">John</name>

<gender xsi:type='"ns:Gender'">male</gender>

<address xsi:type="ns:Address">

<street id="3" xsi:type="xsd:string">Dowling st.</street>

<number xsi:type="unsignedInt">10</number>

<city id="4" xsi:type="xsd:string">London</city>

</address>

<mother xsi:type="ns:Person">

<name xsi:type="xsd:Name">Mary</name>

<gender xsi:type="ns:Gender">female</gender>

<address xsi:type="ns:Address">

<street href="#3"/>

<number xsi:type="unsignedInt">5</number>

<city href="#4"/>

</address>

</mother>

<father xsi:type="ns:Person">

<name xsi:type="xsd:Name">Stuart</name>

<gender xsi:type="ns:Gender">male</gender>

<address xsi:type="ns:Address">

<street xsi:type="xsd:string">Main st.</street>

<number xsi:type="unsignedInt">13</number>

<city href="#4"/>

</address>

</father>

</johnnie>

82

The following program fragment decodes this content from standard input and reconstructs the
original data structure on the heap:

#include "soapH.h"
int main()
{
struct soap soap;
ns__Person *mother, *father, *john = NULL;
soap-init(&soap);
soap_imode(&soap, SOAP_ENC_ZLIB); // optional: gzip is detected automatically
soap_begin(&soap);
if ((john = soap_get_ns__Person(&soap, NULL, NULL, NULL)) == NULL)
.. error ...
mother = john->mother;
father = john->father;

soap-_end_recv(&soap);
soap_free_temp(&soap); // Clean up temporary data but keep deserialized data

}

struct Namespace namespaces|| =

{
{"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/" },
{"SOAP-ENC" " http://schemas.xmlsoap.org/soap/encoding/" },
"xsi”, "http://www.w3.0rg/2001/XMLSchema-instance” },
{"xsd", "http://www.w3.0rg/2001/XMLSchema" },
"ns", "urn:person” }, // Namespace URI of the “Person” data type

{NULL, NULL}
%

It is REQUIRED to either pass NULL to the soap_get routine, or a valid pointer to a data structure
that can hold the decoded content. If the data john was already allocated then it does not need
to be allocated again as the following demonstrates. The following program fragment decodes the
SOAP content in a struct ns__Person allocated on the stack:

#include "soapH.h"

int main()

{
struct soap soap;
ns__Person *mother, *father, john;
soap-init(&soap);
soap_default_ns__Person(&soap, &john);
soap_imode(&soap, SOAP_ENC_ZLIB); // optional
soap_begin(&soap);
soap_begin_recv(&soap);
if (soap_get_ns__Person(&soap, &john, "johnnie”, NULL) == NULL)

.. €error ...

-

struct Namespace namespaces[] =

83

Note the use of soap_default_ns__Person. This routine is generated by the gSOAP soapcpp2 tool and
assigns default values to the fields of john.

7.5.6 Serializing and Deserializing Class Instances to Streams

C++ applications can define appropriate stream operations on objects for (de)serialization of ob-
jects on streams. This is best illustrated with an example. Section 7.5.3 gives details on serializing
types in general. Consider the class

class ns__person
{ public:
char *name;
struct soap *soap; // we need this, see below
ns_ _person();
“ns_ _person();

¥

The struct soap member is used to bind the instances to a gSOAP context for (de)serialization. We
use the gSOAP soapcpp2 compiler from the command prompt to generate the class (de)serializers
(assuming that person.h contains the class declaration):

> soapcpp2 person.h

gSOAP generates the (de)serializers and an instantiation function for the class soap_new_ns_ _person(struct
soap *soap, int num) to instantiate one or more objects and associate them with a gSOAP context
for deallocation with soap_destroy(soap). To instantiate a single object, omit the num parameter or
set to -1. To instantiate an array of objects, set num> 0.

#include "soapH.h"
#include " ns.nsmap”

struct soap *soap = soap_new();
ns__person *p = soap_new_ns__person(soap);

cout << p; // serialize p in XML
in >> p; // parse XML and deserialize p
soap_destroy(soap); // deletes p too

soap-end(soap);
soap_done(soap);

The stream operations are implemented as follows
ostream &operator<<(ostream &o, const ns__person &p)
if (!p.soap)

return o; // need a gSOAP context to serialize
p.soap->o0s = &o0;

84

soap-omode(p.soap, SOAP_XML_TREE); // XML tree or graph
p.soap_serialize(p.soap);
soap_begin_send(p.soap);
if (p.soap_put(p.soap, "person”, NULL)
| soap_end_send(p.soap))
; // handle 1/0O error
return o;

}

istream &operator>>(istream &i, ns__person &p)

if (!p.soap)
return o; // need a gSOAP context to parse XML and deserialize
p.soap—>is = &i;
if (soap_begin_recv(p.soap)
|| p.soap-in(p.soap, NULL, NULL)
| soap_end_recv(p.soap))
; // handle 1/0O error
return i;

}

7.5.7 How to Specify Default Values for Omitted Data

The gSOAP soapcpp2 compiler generates soap_default functions for all data types. The default values
of the primitive types can be easily changed by defining any of the following macros in the stdsoap2.h
file:

#define SOAP_DEFAULT _bool

#define SOAP_DEFAULT _byte

#define SOAP_DEFAULT _double
#define SOAP_DEFAULT _float

#define SOAP_DEFAULT _int

#define SOAP_DEFAULT _long

#define SOAP_DEFAULT _LONG64
#define SOAP_DEFAULT _short

#define SOAP_DEFAULT _string
#define SOAP_DEFAULT _time

#define SOAP_DEFAULT _unsignedByte
#define SOAP_DEFAULT _unsignedInt
#define SOAP_DEFAULT _unsignedLong
#define SOAP_DEFAULT _unsignedLONG64
#define SOAP_DEFAULT _unsignedShort
#define SOAP_DEFAULT _wstring

Instead of adding these to stdsoap2.h, you can also compile with option -DWITH_SOAPDEFS_H and
include your definitions in file soapdefs.h. The absence of a data value in a receiving SOAP message
will result in the assignment of a default value to a primitive type upon deserialization.

Default values can also be assigned to individual struct and class fields of primitive type. For
example,

85

struct MyRecord

{

char *name = "Unknown";
int value = 9999;
enum Status { active, passive } status = passive;

}

Default values are assigned to the fields on receiving a SOAP/XML message in which the data
values are absent.

Because method requests and responses are essentially structs, default values can also be assigned to
method parameters. The default parameter values do not control the parameterization of C/C++
function calls, i.e. all actual parameters must be present when calling a function. The default
parameter values are used in case an inbound request or response message lacks the XML ele-
ments with parameter values. For example, a Web service can use default values to fill-in absent
parameters in a SOAP /XML request:

int ns__login(char *uid = "anonymous”, char *pwd = "guest”, bool granted);
When the request message lacks uid and pwd parameters, e.g.:

<?7xml version="1.0" encoding="UTF-8"7>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns="http://tempuri.org">
<SOAP-ENV:Body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<ns:login>
</ns:login>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

then the service uses the default values. In addition, the default values will show up in the
SOAP /XML request and response message examples generated by the gSOAP compiler.

8 The wsdl2h WSDL and Schema Importer

The wsdI2h tool is an advanced application that converts one or more WSDLs to C/C++. It can
also be used without WSDLs to convert XML schemas (XSD files) to C/C++ to implement XML
data bindings in C and C++.

The creation of C and C++ applications from one of more WSDL service descriptions is a two-step
process.

To convert a WSDL to C++, use:

> wsdl2h file.wsd|

86

to generate a C++ header file file.h. This generated header file is a Web service specification
that contains the parameter types and service function definitions in an understandable format in
C++ (or ANSI C as shown below). Web service operations are represented as function prototypes.
Schema types are represented by semantically equivalent C/C++ types that are convenient and
natural to use in a C/C++ application. The generated header file also contains various annotations
related to the Web service properties defined in the WSDL.

To generate ANSI C, use option -c:
> wsdl2h -c file.wsdl

Multiple WSDL specifications can be processed at once and saved to one file with the -o option:

> wsdl2h -o file.h filel.wsdl file2.wsdl file3.wsdl

You can retrieve WSDLs from one of more URLs:
> wsdl2h -o file.h http://www.example.com/example.wsd|

To convert XML schemas to C or C++ XML data binding code, use:

> wsdl2h -o file.h filel.xsd file2.xsd file3.xsd

The wsdI2h-generated header file file.h is processed by the soapcpp2 tool to auto-generate the ad-
vanced data binding logic to convert the C/C++ data to XML and vice versa at runtime for your
SOAP /XML application.

To process a gSOAP header file file.h (generated by wsdI2h) to generate advanced XML data bindings
for C++, use:

> soapcpp?2 -i -limport file.h

When the header file file.h was generated for C++, then this command generates a couple of
C++ source files (more details will follow in Section 9) that implement XML encoders for the
data binding. Option -i generates a client proxy objects and service objects to invoke and serve
SOAP /XML operations, respectively. Option -limport sets the import directory for imported files
from the package’s import, such as stlvector.h for STL vector serialization support.

When the header file file.h was generated for ANSI C, then the above command generates a couple
of C files that implement XML encoders, client stubs for remote invocation, and service skeletons
for service operations.

Consider for example the following commands to implement a c++ client of a service:
> wsdl2h -o calc.h http://www.genivia.com/calc.wsdl
> soapcpp?2 -i -limport calc.h

The first command generates calc.h from the WSDL at the specified URL. The header file is then
processed by the soapcpp2 tool to generate the proxies (and service objects that we will not use) for
the client application.

87

The C++ client application uses the auto-generated soapcalcProxy.h class and calc.nsmap XML names-
pace table to access the Web service. Both need to be #include-d in your source. Then compile and
link the soapcalcProxy.cpp, soapC.cpp and stdsoap2.cpp sources to complete the build.

8.1 wsdl2h Options

The wsdI2h tool is an advanced XML data binding tool for converting WSDLs and XML schemas
(XSD files) to C or C++. The tool takes WSDL and/or XSD files or URLs and converts these to a
C or C++ specification in one easy-to-read C/C++ header file. The header file is not intended
to be included in your code directly!. It should be converted by soapcpp2 to generate the logic
for the data bindings. It can however be safely converted by a documentation tool such as Doxygen
to analyze and represent the service operations and data in a convenient layout. To this end, the
header file is self-explanatory.

The wsdI2h tool generates only one file, the header file that includes all of the information obtained
from all WSDL and schema files provided to the tool at the command-line prompt. The default
output file name of wsdi2h is the first WSDL /schema input file name but with extension .h instead
of .wsdl (or .xsd). When an input file is absent or a WSDL file from a Web location is accessed,
the header output will be produced on the standard output unless option -o is used to direct the
output to a file.

The wsdl2h command-line options are:

88

Option Description

-a generate indexed struct names for local elements with anonymous types
-b bi-directional operations to serve one-way response messages (duplex)
-C generate C source code

-C++ generate C++ source code

-c++11 generate C+411 source code

-d use DOM to populate xs:any and xsd:anyType elements

-D make attribute members with default values optional with pointers

-e don’t qualify enum names

This option is for backward compatibility with gSOAP 2.4.1 and earlier.
The option does not produce code that conforms to WS-I Basic Profile 1.0a.

-f generate flat C++ class hierarchy for schema extensions
-g generate global top-level element declarations
-h print help information
-l path use path to locate source files for #import
-i don’t import (advanced option)
-j don’t generate SOAP_ENV__Header and SOAP_ENV_ _Detail definitions
-k don’t generate SOAP_ENV__Header mustUnderstand qualifiers
-1 include license information in output
-m use xsd.h module to import primitive types
-N name use name for service prefixes to produce a service for each binding
-n name use name as the base namespace prefix name instead of ns
-o file output to file
-P don’t create polymorphic types inherited from xsd__anyType
-p create polymorphic types inherited from base xsd__anyType
This is automatically performed when WSDL contains polymorphic definitions
-q name use name for the C+4 namespace of all declarations
-R generate REST operations for REST bindings in the WSDL
-r host[:port[:uid:pwd]] connect via proxy host, port, and proxy credentials
-r:uid:pwd connect with authentication credentials (digest auth requires SSL)
-s don’t generate STL code (no std::string and no std::vector)
-t file use type map file instead of the default file typemap.dat
-U map Unicode XML names to UTF8-encoded Unicode C/C++ identifiers
-u don’t generate unions
-V display the current version and exit
Y verbose output
-W suppress warnings
-w always wrap response parameters in a response struct
-X don’t generate XML any/anyAttribute extensibility elements
-y generate typedef synonyms for structs and enums
-z1 compatibility with 2.7.6e: generate pointer-based arrays
-z2 compatibility with 2.7.15: qualify element/attribute referenced members
-z3 compatibility with 2.7.16 to 2.8.7: qualify element/attribute references
-74 compatibility up to 2.8.11: don’t generate union structs in std::vector
-z5 compatibility up to 2.8.15: don’t include minor improvements
-z6 compatibility up to 2.8.17: don’t include minor improvements

- don’t generate _USCORE (replace with Unicode _x005f)

Note: see README.txt in the wsdl directory for the latest information on installation and options to
of the wsdl2h WSDL /schema importer.

89

8.2 Customizing Data Bindings With The typemap.dat File

The typemap.dat file for the wsdl2h tool is intended to customize or optimize the type bindings by
mapping schema types to C/C++ types. It contains custom XML Schema to C/C++ type bindings
and a few bindings are defined for convenience.

Here is an example typemap file’s content:

This file contains custom definitions of the XML Schema types and
C/C++ types for your project, and XML namespace prefix definitiomns.
The wsdl2h WSDL importer consults this file to determine bindings.

[

// This comment will be included in the generated .h file

// You can include any additional declarations, includes, imports, etc.
// within [] sections. The brackets MUST appear at the start of a line

]
XML namespace prefix definitions can be provided to override the
default choice of nsl, ns2, ... prefixes. For example:

"http://www.soapinterop.org/"
"http://www.soapinterop.org/xsd"

Type bindings can be provided to bind XML schema types to C/C++ types for your project. Type
bindings have four parts:

prefix__type = declaration | use | ptr-use

where 'prefix__type’ is the C/C++-translation of the schema type, ’declaration’ introduces the
C/C++ type in the header file, the optional use’ specifies how the type is used directly, and the
optional 'ptr-use’ specifies how the type is used as a pointer type.

Example XML Schema and C/C++ type bindings:

xsd__int = | int
xsd__string = | char* | charx
xsd__boolean = enum xsd__boolean false_, true_ ; | enum xsd__boolean

xsd_ _base64Binary = class xsd__base64Binary wunsigned char *__ptr; int __size; ; \
xsd__base64Binary | xsd__base64Binary

You can extend structs and classes with member data and functions.

For example, adding a constructor to ns__myClass: ns__myClass = $ ns__myClass();
The general form is # class_name = $ member;

The i and s prefixes are declared such that the header file output by the WSDL parser will use
these to produce C/C++ code. XML Schema types are associated with an optional C/C++ type
declaration, a use reference, and a pointer-use reference. The pointer-use reference of the xsd_ _byte
type for example, is int* because char* is reserved for strings.

When a type binding requires only the usage to be changed, the declaration part can be given by
an elipsis ..., as in:

90

prefix__type = ... | use | ptr-use

This ensures that the wsdl2h-generated type definition is preserved, while the use and ptr-use are
remapped.

This method is useful to serialize dynamic types in C, where elements types int XML carry the
xsi:type attribute.

The following example illustrates an “any” type mapping for the ns:sometype XSD type in a
schema. This type will be replaced with a "any” type wrapper that supports dynamic serialization
with xsi:type:

[

struct __any

int __type;
void *__item;

}
]

xsd__anyType = ... | struct __any | struct __any

where __type and __item are used to (de)serialize any data type in the wrapper, including base and
its derived types based on xsi:type attribuation.

To support complexType extensions that are dynamically bound in C code, i.e. polymorphic types
based on inheritance hierarchies, we can redeclare the base type of a hierarchy as a wrapper type
and use the __type to serialize base or derived types. One addition is needed to support base type
serialization without the use of xsi:type attributes. The absence of this attribute requires the
serialization of the base type.

Basically, we need to be able to both handle a base type and its extensions as per schema exten-
sibility. Say base type ns:base is a complexType that is extended by several other complexTypes.
To implement dynamic binding in C to serialize the base type and derived types, we define:

L
struct __ns__base
int __type;

void *__item;
struct ns__base *__self;

}
]

ns__base = ... | struct __ns__base | struct __ns__base

The __self field refers to the element tag (basically a struct member name) to which the ns:base
type is associated. So for example, we see in the soapcpp2-generated output:

struct ns__data

{

struct __ns__base name;

91

-

where __item represents name when the __ns__base is serialized with an xsi:type attribute, and _ _self
represents name when the __ns__base is serialized wwithout an xsi:type attribute. Therefore, the
dynamic binding defaults to struct ns__base *__self when no dynamic type information in XML is
available.

Additional data and function members can be provided to extend a generated struct or class. Class
and struct extensions are of the form:

prefix__type = $ member-declaration

For example, to add a constructor and destructor to class myns_ _record:
myns__record = $ myns__record(); myns__record = $§ “myns__record();

Type remappings can be given to map a type to another type:
prefix__typel == prefix__type2

which replaces prefix__typel by prefix__type2 in the wsdl2h output. For example:
SOAP_ENC_ _boolean == xsd__boolean

where SOAP_ENC_ boolean is mapped to xsd__boolean, which in turn may be mapped to a C enum
xsd_ _boolean type or C++ bool type.

9 Using the soapcpp2 Compiler and Code Generator

The soapcpp2 compiler and code generator is invoked from the command line and optionally takes
the name of a header file as an argument or, when the file name is absent, parses the standard
input:

> soapcpp2 [aheaderfile.h]

where aheaderfile.h is a C/C++ header file generated by wsdI2h or developed manually to specify
the SOAP /XML service operations as function prototypes and the C/C++ data types to be auto-
mapped to XML.

The soapcpp2 tool produces C/C++ source files. These files are used to implement SOAP /XML
clients and services, and to implement the advanced XML data binding logic to convert C/C++
data into XML and vice versa.

The type of files generated by soapcpp2 are:

92

File Name

Description

soapStub.h
soapH.h
soapC.cpp

soapClient.cpp
soapServer.cpp

A modified and annotated header file produced from the input header file
Main header file to be included by all client and service sources
Serializers and deserializers for the specified data structures

Client stub routines for remote operations

Service skeleton routines

soapClientLib.cpp Client stubs combined with local static (de)serializers
soapServerLib.cpp Service skeletons combined with local static (de)serializers
soapXYZProxy.h A C++ proxy object (link with soapC.cpp soapClient.cpp)

soapXYZProxy.h

With option -i: proxy object (link with soapC.cpp and soapXYZProxy.cpp)

soapXYZProxy.cpp With option -i: proxy code

s0apXYZObject.h A C++ server object (link with soapC.cpp and soapServer.cpp)
soapXYZService.h With option -i: server object (link with soapC.cpp and soapXYZService.cpp)
soapXYZService.cpp With option -i: server code

.xsd

.wsdl

xml

.nsmap

An ns.xsd file is generated with an XML Schema for each namespace prefix ns used
by a data structure in the header file input to the compiler, see Section 7.2.9

A ns.wsdl file is generated with an WSDL description for each namespace prefix ns
used by a service operation in the header file input to the compiler, see Section 7.2.9
Several SOAP/XML request and response files are generated. These are exam-
ple message files are valid provided that sufficient schema namespace directives
are added to the header file or the generated .nsmap namespace table for the
client/service is not modified by hand

A ns.nsmap file is generated for each namespace prefix ns used by a service operation
in the header file input to the compiler, see Section 7.2.9. The file contains a
namespace mapping table that can be used in the client/service sources

Both client and service applications are developed from a header file that specifies the service oper-
ations. If client and service applications are developed with the same header file, the applications
are guaranteed to be compatible because the stub and skeleton routines use the same serializers and
deserializers to encode and decode the parameters. Note that when client and service applications
are developed together, an application developer does not need to know the details of the internal
SOAP encoding used by the client and service.

The soapClientLib.cpp and soapServerLib.cpp can be used to build (dynamic) client and server libraries.
The serialization routines are local (static) to avoid link symbol conflicts. You must create a separate
library for SOAP Header and Fault handling, as described in Section 19.39.

The following files are part of the gSOAP package and are required to build client and service

applications:

File Name

Description

stdsoap2.h
stdsoap2.c
stdsoap2.cpp

Header file of stdsoap2.cpp runtime library
Runtime C library with XML parser and run-time support routines
Runtime C++ library identical to stdsoap2.c

9.1 soapcpp2 Options

The soapcpp2 source-to-source compiler supports the following command-line options:

93

Option

Description

-1
-2
-0
-C
-S
-T
-Ec
-Ed
-Et
-L
-a
-A
-b
-C
-d <path>
-e
N
-h

-i

-J

-l <path>
-l
-m
-n

-p <name>
-g <name>

generate SOAP 1.1 bindings

generate SOAP 1.2 bindings

no SOAP bindings, use REST

generate client-side code only

generate server-side code only

generate server auto-test code

generate extra routines for deep data copying

generate extra routines for deep data deletion

generate extra routines for data traversals with walker functions

do not generate soapClientLib/soapServerLib

use SOAPAction with WS-Addressing to invoke server-side operations
require SOAPAction to invoke server-side operations

serialize byte arrays char[N] as string

generate pure C code

save sources in directory specified by <path>

generate SOAP RPC encoding style bindings

multiple soapC files, with IV serializer definitions per file (N > 10)
print a brief usage message

generate service proxies and objects inherited from soap struct
generate C++ service proxies and objects that can share a soap struct
use <path> for #import (paths separated with ’:> or ’;’ for windows)
generate linkable modules (experimental)

generate Matlab®™ code for MEX compiler

when used with -p, enables multi-client and multi-server builds:

sets compiler option WITH_NONAMESPACES, see Section 9.11

saves the namespace mapping table with name <name>_namespaces instead of namespaces
renames soap_serve() into <name> _serve() and soap_destroy() into <name>_destroy()
save sources with file name prefix <name> instead of “soap”

use name for the C++ namespace of all declarations

generate soapReadme.md report

generates deserialization code with strict XML validation checks
generates code to send typed messages (with the xsi:type attribute)
uncomment comments in WSDL/schema output by suppressing XML comments
display the current version and exit

verbose output

do not generate WSDL and schema files

do not generate sample XML message files

include C/C++ type access information in sample XML messages
compatibility: generate old-style C++ service proxies and objects
compatibility with 2.7.x: omit XML output for NULL pointers
compatibility with <= 2.8.30: _param_N indexing; nillable pointers

For example

> soapcpp2 -cd '../projects’ -pmy file.h

Saves the sources:

../projects/myH.h
../projects/myC.c

94

../projects/myClient.c
../ projects/myServer.c
../ projects/myStub.h

MS Windows users can use the usual “/” for options, for example:
soapcpp? /cd '..\projects' /pmy file.h

Compiler options c, i, n, I, w can be set in the gSOAP header file using the //gsoapopt directive. For
example,

// Generate pure C and do not produce WSDL output:

//gsoapopt cw
int ns__myMethod(char*,char**); // takes a string and returns a string

9.2 SOAP 1.1 Versus SOAP 1.2 and Dynamic Switching

gSOAP supports SOAP 1.1 by default. SOAP 1.2 support is automatically turned on when the
appropriate SOAP 1.2 namespace is used, which shows up in the namespace mapping table:

struct Namespace namespaces[] =

{
{"SOAP-ENV", "http://www.w3.0rg/2003/05/soap-envelope”, ... },

{"SOAP-ENC", "http://www.w3.0rg/2003/05/soap-encoding, ... "},
}

Normally the soapcpp2-generated namespace table allows dynamic switching between SOAP 1.1 to
SOAP 1.2 by providing the SOAP 1.2 namespace as a pattern in the third column of a namespace
table:

struct Namespace namespaces[] =

{"SOAP-ENV", " http://schemas.xmlsoap.org/soap/envelope/", " http://www.w3.org/* /soap-encoding” },
{"SOAP-ENC", "http://schemas.xmlsoap.org/soap/encoding/", " http:/ /www.w3.org /* /soap-envelope” },

-

Wk

where the in the third column of the namespace URI pattern is a meta wildcard. This is used
to match and accept inbound namespaces.

This way, gSOAP Web services can respond to either SOAP 1.1 or SOAP 1.2 requests. gSOAP
will automatically return SOAP 1.2 responses for SOAP 1.2 requests.

The gSOAP soapcpp? tool generates a .nsmap file with SOAP-ENV and SOAP-ENC namespace patterns
similar to the above. Since clients issue a send first, they will always use SOAP 1.1 for requests
when the namespace table is similar as shown above. Clients can accept SOAP 1.2 responses by
inspecting the response message.

95

To use SOAP 1.2 by default and allow SOAP 1.1 messages to be received, use the soapcpp2 -2 option
to generate SOAP 1.2 conformant .nsmap and .wsdl files. Alternatively, add the following line to
your service definitions header file (generated by wsdl2h) for soapcpp2:

#import "import/soap12.h”

Caution: SOAP 1.2 does not support partially transmitted arrays. So the _ _offset field of a dynamic
array is meaningless.

Caution: SOAP 1.2 requires the use of SOAP_ENV__Code, SOAP_ENV__Reason, and SOAP_ENV_ _Detail
fields in a SOAP_ENV_ _Fault fault struct, while SOAP 1.1 uses faultcode, faultstring, and detail fields.
Use soap_receiver_fault_subcode(struct soap *soap, const char *subcode, const char *faultstring, const char
*detail) to set a SOAP 1.1/1.2 fault at the server-side with a fault subcode (SOAP 1.2). Use
soap_sender_fault_subcode(struct soap *soap, const char *subcode, const char *faultstring, const char *detail)
to set a SOAP 1.1/1.2 unrecoverable Bad Request fault at the server-side with a fault subcode
(SOAP 1.2).

9.3 The soapdefs.h Header File
The soapdefs.h header file is included in stdsoap2.h when compiling with option -DWITH_SOAPDEFS_H:

> c++ -DWITH_SOAPDEFS_H -c stdsoap2.cpp

The soapdefs.h file allows users to include definitions and add includes without requiring changes to
stdsoap2.h. You can also specify the header file name to include as a macro SOAPDEFS_h to override
the name soapdefs.h:

> c++ -DSOAPDEFS_H=mydefs.h -c stdsoap2.cpp

For example,

// Contents of soapdefs.h
#include <ostream>
#define SOAP_BUFLEN 65536 // use large send/recv buffer

The following header file can now refer to ostream:

extern class ostream; // ostream can't be (de)serialized, but need to be declared to make it visible
to gSOAP
class ns__myClass

{

virtual void print(ostream &s) const; // need ostream here

See also Section 19.3.

96

9.4 How to Build Modules and Libraries with the #module Directive

The #module directive is used to build modules. A library can be built from a module and linked
with multiple Web services applications. The directive should appear at the top of the header file
and has the following formats:

#module " name"

and

"o

#module "name" " fullname’

where name must be a unique short name for the module. The name is case insensitive and MUST
not exceed 4 characters in length. The fullname, when present, represents the full name of the
module.

The rest of the content of the header file includes type declarations and optionally the declarations
of service operations and SOAP Headers/Faults. When the gSOAP soapcpp2 compiler processes
the header file module, it will generate the source codes for a library. The Web services application
that uses the library should use a header file that imports the module with the #import directive.

For example:

/* Contents of module.h */
#module "test"”

long;

char*;

struct ns__S

!

The module.h header file declares a long, char*, and a struct ns__X. The module name is ”test”,
so the gSOAP soapcpp2 compiler produces a testC.cpp file with the (de)serializers for these types.
The testC.cpp library can be separately compiled and linked with an application that is built from a
header file that imports "module.h” using #import "module.h”. You should also compile testClient.cpp
when you want to build a library that includes the service operations that you defined in the module
header file.

There are some limitations on a sequence of module imports. A module MUST be imported into
another header to use the module content and you MUST place this import statement before all
other statements in the file, including other imports (except when these are also modules). It is
also advised to put all basic data type definitions in the root module of a module import hierarchy;,
e.g. using typedef to declare XSD types (see also Section 11.3).

You cannot use a module alone to build a SOAP or XML application. That is, the final gSOAP
header file in the import chain SHOULD NOT be a module.

When multiple modules are linked, the types that they declare MUST be declared in one module
only to avoid name clashes and link errors. You cannot create two modules that share the same

97

type declaration and link the modules. When necessary, you should consider creating a module
hierarchy such that types are declared only once and by only one module when these modules must
be linked.

9.5 How to use the #import Directive

The #import directive is used to include gSOAP header files into other gSOAP header files for
processing with the gSOAP compiler soapcpp2. The C #include directive cannot be used to include
gSOAP header files. The #include directive is reserved to control the post-gSOAP compilation
process, see 9.6.

The #import directive is used for two purposes: you can use it to include the contents of a header
file into another header file and you can use it to import a module, see 9.4.

An example of the #import directive:

#import " mydefs.gsoap”
int ns__mymethod(xsd_ _string in, xsd__int *out);

where " mydefs.gsoap” is a gSOAP header file that defines xsd_ string and xsd_ _int:

typedef char *xsd__string;
typedef int xsd__int;

When importing a module, where the module content is declared with #module, then note that this
module MUST place the import statement before all other statements in the header file, including
other imports (except when these are also modules).

9.6 How to Use #include and #define Directives

The #include and #define directives are normally ignored by the gSOAP soapcpp2 compiler and just
passed on to the generated code. Thus, the gSOAP compiler will not actually parse the contents
of the header files provided by the #include directives in a header file. Instead, the #include and
#define directives will be added to the generated soapH.h header file before any other header file is
included. Therefore, #include and #define directives can be used to control the C/C++ compilation
process of the sources of an application. However, they have no effect on soapcpp2.

The following example header file refers to ostream by including <ostream>:

#include <ostream>

#define WITH_COOKIES // use HTTP cookie support (you must compile stdsoap2.cpp with -
DWITH_COOKIES)

#define WITH_OPENSSL // enable HTTPS/SSL support (you must compile stdsoap2.cpp with
-DWITH_OPENSSL)

#define WITH_.GNUTLS // enable HTTPS/SSL support (you must compile stdsoap2.cpp with -
DWITH_GNUTLS)

#define SOAP_DEFAULT _float FLT_NAN // use NaN instead of 0.0

extern class ostream; // ostream can't be (de)serialized, but need to be declared to make it visible
to gSOAP

98

class ns__myClass

{

virtual void print(ostream &s) const; // need ostream here

-

This example also uses #define directives for various settings in the target source code.

Caution: Note that the use of #define in the header file does not automatically result in compiling
stdsoap2.cpp with these directives. You MUST use the -DWITH_COOKIES and -DWITH_OPENSSL (or
-DWITH_GNUTLS options when compiling stdsoap2.cpp before linking the object file with your codes.
As an alternative, you can use #define WITH.SOAPDEFS_H and put the #define directives in the
soapdefs.h file.

9.7 Compiling a SOAP/XML Client Application with soapcpp2

After invoking the gSOAP soapcpp2 tool on a header file description of a service, the client appli-
cation can be compiled on a Linux machine as follows:

> c++ -0 myclient myclient.cpp stdsoap2.cpp soapC.cpp soapClient.cpp
Or on a Unix machine:
> c++ -o myclient myclient.cpp stdsoap2.cpp soapC.cpp soapClient.cpp -Isocket -Ixnet -Insl

(Depending on your system configuration, the libraries libsocket.a, libxnet.a, libnsl.a or dynamic *.so
versions of those libraries are required.)

The myclient.cpp file must include soapH.h and must define a global namespace mapping table. A
typical client program layout with namespace mapping table is shown below:

// Contents of file " myclient.cpp”
#include "soapH.h";

// A service operation invocation:
soap_call_some_remote_method(...);

struct Namespace namespaces|| =

{ // {’ns-prefix", "ns-name"

{"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/" },
{"SOAP-ENC", "http://schemas.xmlsoap.org/soap/encoding/" },
"xsi”, "http://www.w3.0rg /2001 /XMLSchema-instance” },
{"xsd", "http://www.w3.0rg/2001/XMLSchema" },

{"nsl", "urn:my-remote-method" },

{NULL, NULL}

¥

A mapping table is generated by the gSOAP soapcpp2 compiler that can be used in the source, see
Section 7.2.9.

99

9.8 Compiling a SOAP/XML Web Service with soapcpp2

After invoking the gSOAP soapcpp2 tool on a header file description of the service, the server
application can be compiled on a Linux machine as follows:

> c+-+ -0 myserver myserver.cpp stdsoap2.cpp soapC.cpp soapServer.cpp
Or on a Unix machine:
> c++ -0 myserver myserver.cpp stdsoap2.cpp soapC.cpp soapServer.cpp -Isocket -Ixnet -Insl

(Depending on your system configuration, the libraries libsocket.a, libxnet.a, libnsl.a or dynamic *.so
versions of those libraries are required.)

The myserver.cpp file must include soapH.h and must define a global namespace mapping table. A
typical service program layout with namespace mapping table is shown below:

// Contents of file " myserver.cpp”
#tinclude "soapH.h";
int main()

{

soap_serve(soap_new());

}

// Implementations of the service operations as C++ functions

struct Namespace namespaces|| =

{ /] {'ns-prefix', "ns-name” }
{"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/" },
{"SOAP-ENC", " http://schemas.xmlsoap.org/soap/encoding/" },
"xsi”, "http://www.w3.0rg/2001/XMLSchema-instance” },
{"xsd", "http://www.w3.0rg/2001/XMLSchema" },
{"ns1”, "urn:my-remote-method" },
{NULL, NULL}

When the gSOAP service is compiled and installed as a CGI application, the soap_serve function
acts as a service dispatcher. It listens to standard input and invokes the method via a skeleton
routine to serve a SOAP client request. After the request is served, the response is encoded in
SOAP and send to standard output. The method must be implemented in the server application
and the type signature of the method must be identical to the service operations specified in the
header file. That is, the function prototype in the header file must be a valid prototype of the
method implemented as a C/C++ function.

9.9 Compiling Web Services and Clients in ANSI C

The gSOAP soapcpp2 compiler can be used to create pure C Web services and clients. The gSOAP
stub and skeleton compiler soapcpp2 generates .cpp files by default. The compiler generates .c files

100

with the -c option. However, these files only use C syntax and data types if the header file input
to soapcpp2 uses C syntax and data types. For example:

> soapcpp2 -c quote.h
> cc -0 quote quote.c stdsoap2.c soapC.c soapClient.c

Warnings will be issued by the compiler when C++ class declarations occur in the header file.

9.10 Limitations of gSOAP

gSOAP is SOAP 1.1 and SOAP 1.2 compliant and supports SOAP RPC and document/literal
operations.

From the perspective of the C/C++ language, a few C++ language features are not supported by
gSOAP and these features cannot be used in the specification of SOAP service operations.

There are certain limitations for the following C++ language constructs:

STL and STL templates The gSOAP soapcpp2 compiler supports C++ strings std::string and
std::wstring (see Section 11.3.6) and the STL containers std::deque, std::list, std::vector, and std::set,
(see Section 11.11.8).

Templates The gSOAP soapcpp2 compiler is a preprocessor that cannot determine the template
instantiations used by the main program, nor can it generate templated code. You can
however implement containers similar to the STL containers.

Multiple inheritance Single class inheritance is supported. Multiple inheritance cannot be sup-
ported due to limitations of the SOAP protocol.

Abstract methods A class must be instantiatable to allow decoding of instances of the class.

Directives Directives and pragmas such as #include and #define are interpreted by the gSOAP
soapcpp2 compiler. However, the interpretation is different compared to the usual handling of
directives, see Section 9.6. If necessary, a traditional C++ preprocessor can be used for the
interpretation of directives. For example, Unix and Linux users can use “cpp -B” to expand
the header file, e.g. cpp -B myfile.h | soapcpp2. Use the gSOAP #import directive to import
gSOAP header files, see 9.5.

C and C++ programming statements All class methods of a class should be declared within
the class declaration in the header file, but the methods should not be implemented in code.
All class method implementations must be defined within another C++ source file and linked
to the application.

The following data types require some attention to ensure they are serialized:

union types A union data type can not be serialized unless run-time information is associated with
a union in a struct/class as discussed in Section 11.7. An alternative is to use a struct with
a pointer type for each field. Because NULL pointers are not encoded, the resulting encoding
will appear as a union type if only one pointer field is valid (i.e. non-NULL) at the time that
the data type is encoded.

101

void and void* types The void data type cannot be serialized unless run-time type information is
associated with the pointer using a int __type field in the struct/class that contains the void*.
The void* data type is typically used to point to some object or to some array of some type
of objects at run-time. The compiler cannot determine the type of data pointed to and the
size of the array pointed to. A struct or class with a void* field can be augmented to support
the (de)serialization of the void* using a int __type field as described in Section 11.9.

Pointers to sequences of elements in memory Any pointer, except for C strings which are
pointers to a sequence of characters, are treated by the compiler as if the pointer points
to only one element in memory at run-time. Consequently, the encoding and decoding
routines will ignore any subsequent elements that follow the first in memory. For the same
reason, arrays of undetermined length, e.g. float a[] cannot be used. gSOAP supports dynamic
arrays using a special type convention, see Section 11.11.

Uninitialized pointers Obviously, all pointers that are part of a data structure must be valid or
NULL to enable serialization of the data structure at run time.

There are a number of programming solutions that can be adopted to circumvent these limitations.
Instead of using veid*, a program can in some cases be modified to use a pointer to a known type.
If the pointer is intended to point to different types of objects, a generic base class can be declared
and the pointer is declared to point to the base class. All the other types are declared to be derived
classes of this base class. For pointers that point to a sequence of elements in memory dynamic
arrays should be used instead, see 11.11.

9.11 Library Build Flags

The following macros (#tdefines) can be used to enable certain optional features when building the
libgsoap library or when compiling and linking stdsoap2.c and stdsoap2.cpp:

102

Macro

Description

WITH_SOAPDEFS_H

SOAPDEFS_H
WITH_COOKIES
WITH_OPENSSL
WITH_GNUTLS
WITH_IPV6

WITH_IPV6_V60ONLY
WITH_NO_IPV6_V60ONLY

WITH_TCPFIN
WITH_FASTCGI
WITH_GZIP
WITH_ZLIB
WITH_NOIO
WITH_NOIDREF

WITH_NOHTTP
WITH_NOZONE
WITH_LEAN
WITH_LEANER
WITH_FAST
WITH_COMPAT

WITH_NONAMESPACES

WITH_PURE_VIRTUAL
WITH_.NOEMPTYSTRUCT

WITH_NOGLOBAL

WITH_CDATA
WITH_C_LOCALE

includes the soapdefs.h file for custom settings, see Section 9.3

the header file to include, if different from soapdefs.h (see above)
enables HTTP cookies, see Sections 19.30 19.31

enables OpenSSL, see Sections 19.24 19.23

enables GNUTLS, see Sections 19.24 19.23

enables IPv6 support (compile ALL sources with this macro set)
(deprecated, this is the default) IPv6-only server option
(deprecated, use soap->bind_v6only = 1) permits IPv4 and IPv6
use TCP FIN after sends when socket is ready to close

enables FastCGI, see Sections 19.34

enables gzip and deflate compression, see Section 19.29

enables deflate compression only, see Section 19.29

eliminates need for file IO and BSD socket library, see Section 19.36
eliminates href/ref and id attributes to (de)serialize multi-ref data,
or alternatively use the SOAP_XML_TREE runtime flag

eliminates HTTP stack to reduce code size

removes and ignores the timezone in xsd:dateTime

creates a small-footprint executable, see Section 19.35

creates an even smaller footprint executable, see Section 19.35

use faster memory allocation when used with WITH_LEAN/WITH_LEANER
removes dependency on C++ stream libraries, eliminating C+4 exceptions
removes dependence on global namespaces table, MUST set it
explicitly with soap_set_.namespaces()

see also Section 10.4

for C++ abstract service classes with pure virtual methods

inserts a dummy member in empty structs to allow compilation
omit SOAP Header and Fault serialization code,

prevents duplicate definitions with generated soapXYZLib code
retain the parsed CDATA sections in literal XML strings (no conversion, default
use locale functions when available to ensure locale-independent
number conversions (force the use of C locale)

WITH_CASEINSENSITIVETAGS enable case insensitive XML parsing
WITH_REPLACE_ILLEGAL_.UTF8 strict UTF-8: replaces UTF8 content that is outside the allowed range, with U+

Other compile-time flags:

Macro

Description

SOCKET_CLOSE_ON_EXIT prevents a server port from staying in listening mode after exit

by internally setting fentl(sock, F_SETFD, FD_-CLOEXEC)

Compile-time flags to change the default engine settings:

Macro

Description

SOAP_BUFLEN
SOAP_TAGLEN

SOAP_SSL_RSA _BITS
SOAP_UNKNOWN_CHAR

the length of the internal message buffer (affects socket comms)

maximum length of XML tags and URL domain names (buffering)

the length of the RSA key (2048 by default)

an 8 bit code that represents a character that could not be converted

to an ASCII char (e.g. from Unicode, applicable when SOAP_C_UTFSTRING is off)

Caution: it is important that all of these macros MUST be consistently defined to compile all
sources, such as stdsoap2.cpp, soapC.cpp, soapClient.cpp, soapServer.cpp, and all application sources that

103

include stdsoap2.h or soapH.h. If the macros are not consistently used, the application will crash due
to a mismatches in the declaration and access of the gSOAP context.

9.12 Run Time Flags

gSOAP provides flags to control the input and output mode settings at runtime. These flags are
divided into four categories: transport (I0), content encoding (ENC), XML marshalling (XML),
and C/C++ data mapping (C).

Although gSOAP is fully SOAP 1.1 compliant, some SOAP implementations may have trouble
accepting multi-reference data and/or require explicit nil data so these flags can be used to put
gSOAP in “safe mode”. In addition, the embedding (or inlining) of multi-reference data is adopted
in the SOAP 1.2 specification, which gSOAP automatically supports when handling with SOAP
1.2 messages.

To set and clear flags for inbound message processing use:

soap_set_imode(soap, inflag);
soap_clr_imode(soap, inflag);

To set and clear the flags for outbound message processing use:

soap_set_omode(soap, outflag);
soap_clr_imode(soap, outflag);

To allocate and initialize a gSOAP context with inbound and outbound flags use:
soap_new2(soap, inflag, outflag);

To initialize an unitialized gSOAP context with inbound and outbound flags use:
soap-init2(soap, inflag, outflag);

The input-mode and output-mode flags for inbound and outbound message processing are:

104

Flag

Description

SOAP_IO_FLUSH
SOAP_IO_BUFFER
SOAP_IO_STORE
SOAP_IO_CHUNK
SOAP_IO_LENGTH
SOAP_IO_KEEPALIVE
SOAP_IO_UDP
SOAP_ENC_PLAIN
SOAP_ENC_XML
SOAP_ENC_DIME
SOAP_ENC_MIME
SOAP_ENC_MTOM
SOAP_ENC_ZLIB
SOAP_ENC_SSL
SOAP_XML_INDENT
SOAP_XML_CANONICAL
SOAP_XML_DEFAULTNS
SOAP_XML_IGNORENS
SOAP_XML_STRICT
SOAP_XML_TREE

SOAP_XML_GRAPH
SOAP_XML_NIL
SOAP_XML_NOTYPE
SOAP_C_NOIOB
SOAP_C_UTFSTRING
SOAP_C_MBSTRING
SOAP_C_NILSTRING

in: disable buffering and flush output (default for all file-based output)

in: enable buffering (default for all socket-oriented connections)

in: store entire message to calculate HT'TP content length

out: use HTTP chunking

out: (internal flag) require apriori calculation of content length

in&out: attempt to keep socket connections alive (open)

in&out: use UDP (datagram) transport, maximum message length is SOAP_BUFLEN
in&out: use plain messages without parsing or emitting HT'TP headers
deprecated, alias for SOAP_ENC_PLAIN

out: use DIME encoding (automatic when DIME attachments are used)

out: use MIME encoding (activate using soap_set_mime)

out: use MTOM XOP attachments (instead of DIME)

out: compress encoding with Zlib (deflate or gzip format)

in&out: encrypt with SSL (automatic with "https:” endpoints)

out: produces indented XML output

out: produces canonical XML output

out: forces output of xmlns="...” default namespace declarations

in: ignores the use of XML namespaces in input

in: XML strict validation

out: serialize data as XML trees (no multi-ref, duplicate data when necessary)
in: ignore id attributes (do not resolve id-ref)

out: serialize data as an XML graph with inline multi-ref (SOAP 1.2 default)
out: serialize NULL data as xsi:nil attributed elements

out: disable xsi:type attributes

in: do not fault with SOAP_IOB

in&out: (de)serialize 8-bit strings “as is” (strings MUST have UTF-8 encoded content)
in&out: enable multibyte character support (depends on locale)

out: serialize empty strings as nil (ommited element)

The flags can be selectively turned on/off at any time, for example when multiple Web services are
accessed by a client that require special treatment.

All flags are orthogonal, except SOAP_IO_FLUSH, SOAP_IO_BUFFER, SOAP_IO_STORE, and SOAP_IO_CHUNK
which are enumerations and only one of these I/O flags can be used. Also the XML serialization
flags SOAP_XML_TREE and SOAP_XML_GRAPH should not be mixed.

The flags control the inbound and outbound message transport, encoding, and (de)serialization.
The following functions are used to set and reset the flags for input and output modes:

Function

soap-init2(struct soap *soap, int imode, int omode)
soap_imode(struct soap *soap, int imode)
soap_omode(struct soap *soap, int omode)
soap_set_imode(struct soap *soap, int imode)
soap_set_omode(struct soap *soap, int omode)
soap_clr_imode(struct soap *soap, int omode)
soap-_clr_omode(struct soap *soap, int omode)

Description

Initialize the runtime and set flags
Set all input mode flags

Set all output mode flags

Enable input mode flags

Enable output mode flags

Disable input mode flags

Disable output mode flags

The default setting is SOAP_IO_DEFAULT for both input and output modes.

For example

105

struct soap soap;
soap-init2(&soap, SOAP_IO_KEEPALIVE,
SOAP_IO_KEEPALIVE|SOAP_ENC_ZLIB|SOAP_XML_TREE|SOAP_XML_CANONICAL);

if (soap_call_ns__myMethod(&soap, ...))

sends a compressed client request with keep-alive enabled and all data serialized as canonical XML
trees.

In many cases, setting the input mode will have no effect, especially with HTTP transport be-
cause gSOAP will determine the optimal input buffering and the encoding used for an inbound
message. The flags that have an effect on handling inbound messages are SOAP_I0_KEEPALIVE,
SOAP_ENC_SSL (but automatic when ”https:” endpoints are used or soap_ssl_accept), SOAP_C_NOIOB,
SOAP_C_UTFSTRING, and SOAP_C_MBSTRING.

Caution: The SOAP_XML_TREE serialization flag can be used to improve interoperability with
SOAP implementations that are not fully SOAP 1.1 compliant. However, a tree serialization will
duplicate data when necessary and will crash the serializer for cyclic data structures.

Additional run-time flags to control sockets.

Use the following selection of flags that are OS dependent to control sockets for send /sendto/recv/recvirom
operations:

socket_flags Description
MSG_NOSIGNAL disables sigpipe (check your OS, this is not portable)
MSG_DONTROUTE bypass routing, use direct interface

Use the following selection of flags to set client-side socket connection flags (setsockopt):

connect_flags Description

SO_NOSIGPIPE disables sigpipe (check your OS, this is not portable)

SO_DEBUG turns on recording of debugging information in the underlying protocol modules
SO_BROADCAST permits sending of broadcast messages (e.g. with UDP) when permitted
SO_LINGER set soap.linger_time (set this value as needed)

Use the following selection of flags to set server-side socket connection accept flags (setsockopt):

accept_flags Description

SO_NOSIGPIPE disables sigpipe (check your OS, this is not portable)

SO_DEBUG turns on recording of debugging information in the underlying protocol modules
SO_REUSEADDR reuse bind address immediately (prevents bind reject)

SO_LINGER set soap.linger_time (set this value as needed)

For example, soap.accept_flags = (SO_NOSIGPIPE — SO_LINGER) disables sigpipe signals and set linger
time value given by soap.linger_time (zero by default).

The SO_SNDBUF and SO_RCVBUF socket options can be set by assigning soap.sndbuf and soap.rcvbuf
after the context initialization, respectively. The default value is SOAP_BUFLEN, which is the same
as the size of the internal buffer. A zero value omits the internal setsockopt call to set these options.
Setting these values to zero enables autotuning with Linux 2.4 and up.

106

9.13 Memory Management

Understanding gSOAP’s run-time memory management is important to optimize client and service
applications by eliminating memory leaks and/or dangling references.

There are two forms of dynamic (heap) allocations made by gSOAP’s runtime for serialization and
deserialization of data. Temporary data is created by the runtime such as hash tables to keep
pointer reference information for serialization and hash tables to keep XML id /href information for
multi-reference object deserialization. Deserialized data is created upon receiving SOAP messages.
This data is stored on the heap and requires several calls to the malloc library function to allocate
space for the data and new to create class instances. All such allocations are tracked by gSOAP’s
runtime by linked lists for later deallocation. The linked list for malloc allocations uses some extra
space in each malloced block to form a chain of pointers through the malloced blocks. A separate
malloced linked list is used to keep track of class instance allocations.

If you want to preserve the deserialized data before deleting a soap context, you can assign
management of the data and delegate responsibility of deletion to another soap context using
soap_delegate_deletion(struct soap *soap_from, struct soap *soap_to). This moves all deserialized and
temporary data to the other soap context soap_to, which will delete its data and all the delegated
data it is responsible for when you call soap_destroy and soap_end. This can be particularly useful for
making client calls inside a server operation, i.e. a mixed server/client. The client call inside the
server operation requires a new soap context, e.g. copied from the server’s with soap_copy. Before
destroying the client context with soap_free, the data can be delegated to the server’s context with
soap_delegate_deletion. See samples/mashup/machupserver.c code for an example.

Note that gSOAP does not per se enforce a deallocation policy and the user can adopt a deallocation
policy that works best for a particular application. As a consequence, deserialized data is never
deallocated by the gSOAP runtime unless the user explicitly forces deallocation by calling functions
to deallocate data collectively or individually.

The deallocation functions are:

Function Call Description

soap_destroy(struct soap *soap) Remove all dynamically allocated C++ objects.
must be called before soap_end()

soap-_end(struct soap *soap) Remove temporary data and deserialized data except
class instances

soap_free_temp(struct soap *soap) Instead of soap_destroy and soap_end:

remove temporary data only
soap_dealloc(struct soap *soap, void *p) Remove malloced data at p. When p==NULL: remove all
dynamically allocated (deserialized) data except class instances
soap_delete(struct soap *soap, void *p) Remove class instance at p. When p==NULL: remove all
dynamically allocated (deserialized) class instances
(this is identical to calling soap_destroy(struct soap *soap))
soap_unlink(struct soap *soap, void *p) Unlink data/object at p from gSOAP’s deallocation chain
so gSOAP won’t deallocate it
soap-done(struct soap *soap) Detach context (reset runtime context)
soap-free(struct soap *soap) Detach and free context (allocated with soap_new)

Temporary data (i.e. the hash tables) are automatically removed with calls to the soap_free temp
function which is also made by soap_end and soap_done or when the next call to a stub or skeleton

107

routine is made to send a message or receive a message. Deallocation of non-class based data is
straightforward: soap_end removes all dynamically allocated deserialized data (data allocated with
soap_malloc. That is, when the client/service application does not use any class instances that are
(de)marshalled, but uses structs, arrays, etc., then calling the soap_end function is safe to remove
all deserialized data. The function can be called after processing the deserialized data of a service
operation call or after a number of service operation calls have been made. The function is also
typically called after soap_serve, when the service finished sending the response to a client and the
deserialized client request data can be removed.

Individual data objects can be unlinked from the deallocation chain if necessary, to prevent deal-
location by the collective soap_end or soap_destroy functions.

9.13.1 Memory Allocation and Management Policies
There are three situations to consider for memory deallocation policies for class instances:

1. the program code deletes the class instances and the class destructors in turn SHOULD delete
and free any dynamically allocated data (deep deallocation) without calling the soap_end and
soap_destroy functions,

2. or the class destructors SHOULD NOT deallocate any data and the soap_end and soap_destroy
functions can be called to remove the data.

3. or the class destructors SHOULD mark their own deallocation and mark the deallocation
of any other data deallocated by it’s destructors by calling the soap_unlink function. This
allows soap_destroy and soap_end to remove the remaining instances and data without causing
duplicate deallocations.

It is advised to use pointers to class instances that are used within other structs and classes to avoid
the creation of temporary class instances during deserialization. The problem with temporary class
instances is that the destructor of the temporary may affect data used by other instances through
the sharing of data parts accessed with pointers. Temporaries and even whole copies of class
instances can be created when deserializing SOAP multi-referenced objects. A dynamic array of
class instances is similar: temporaries may be created to fill the array upon deserialization. To
avoid problems, use dynamic arrays of pointers to class instances. This also enables the exchange
of polymorphic arrays when the elements are instances of classes in an inheritance hierarchy. In
addition, allocate data and class instances with soap_malloc and soap_new X functions (more details

below).

To summarize, it is advised to pass class data types by pointer to a service operation. For example:

class X { ... };
ns_ _remoteMethod(X *in, ...);

Response elements that are class data types can be passed by reference, as in:

class X { ... };
class ns__remoteMethodResponse { ... };
ns_ _remoteMethod(X *in, ns__remoteMethodResponse &out);

108

But dynamic arrays declared as class data types should use a pointer to a valid object that will be
overwritten when the function is called, as in:

typedef int xsd__int;

class X { ... };

class ArrayOfint { xsd__int *__ptr; int _ _size; };
ns_ _remoteMethod(X *in, ArrayOfint *out);

Or a reference to a valid or NULL pointer, as in:

typedef int xsd__int;

class X { ... };

class ArrayOfint { xsd__int *__ptr; int _ _size; };
ns__remoteMethod(X *in, ArrayOfint *&out);

The gSOAP memory allocation functions can be used in client and/or service code to allocate
temporary data that will be automatically deallocated. These functions are:

Function Call Description

void *soap_malloc(struct soap *soap, size_t n) return pointer to n bytes

Class *soap_new_Class(struct soap *soap) instantiate Class

Class *soap_new_Class(struct soap *soap, int n) instantiate array of n objects

Class *soap_new_set_Class(struct soap *soap, my, ..., m,;) instantiate and set members m;
Class *soap_new_req_Class(struct soap *soap, my, ..., m,) instantiate and set required-only m;

The soap_new_X functions are generated by the gSOAP soapcpp2 compiler for every class X in the
header file.

Space allocated with soap_malloc will be released with the soap_end and soap_dealloc functions. All
objects instantiated with soap_new_X(struct soap*) are removed altogether with soap_destroy(struct
soap*). To remove just a single object, use soap_delete_X(struct soap*, X*).

For example, the following service uses temporary data in the service operation implementation:

int main()

{..

struct soap soap;
soap-init(&soap);
soap_serve(&soap);
soap_end(&soap);

-

An example service operation that allocates a temporary string is:

int ns__itoa(struct soap *soap, int i, char **a)

{

a = (char)soap-malloc(soap, 11);
sprintf(*a, " %d", i);
return SOAP_OK;

}

109

This temporary allocation can also be used to allocate strings for the SOAP Fault data structure.
For example:

int ns__mymethod(...)

(..

if (exception)

{

char *msg = (char*)soap_malloc(soap, 1024); // allocate temporary space for detailed message
sprintf(msg, "...", ...); // produce the detailed message
return soap_receiver_fault(soap, " An exception occurred”, msg); // return the server-side fault

}
-

Use soap_receiver_fault(struct soap *soap, const char *faultstring, const char *detail) to set a SOAP 1.1/1.2
fault at the server-side. Use soap_sender_fault(struct soap *soap, const char *faultstring, const char *detail)
to set a SOAP 1.1/1.2 unrecoverable Bad Request fault at the server-side. Sending clients are not
supposed to retry messages after a Bad Request, while errors at the receiver-side indicate temporary
problems.

The above functions do not include a SOAP 1.2 Subcode element. To include Subcode element, use
soap-receiver_fault_subcode(struct soap *soap, const char *subcode, const char *faultstring, const char *detail)
to set a SOAP 1.1/1.2 fault with Subcode at the server-side. Use soap_sender_fault_subcode(struct
soap *soap, const char *subcode, const char *faultstring, const char *detail) to set a SOAP 1.1/1.2
unrecoverable Bad Request fault with Subcode at the server-side.

¢SOAP provides a function to duplicate a string into gSOAP’s memory space:

char *soap_strdup(struct soap *soap, const char *s)

The function allocates space for s with soap_malloc, copies the string, and returns a pointer to the
duplicated string. When s is NULL, the function does not allocate and copy the string and returns
NULL.

9.13.2 Intra-Class Memory Management

When a class declaration has a struct soap * field, this field will be set to point to the current
gSOAP runtime context by gSOAP’s deserializers and by the soap_new_Class functions. This sim-
plifies memory management for class instances. The struct soap* pointer is implicitly set by the
gSOAP deserializer for the class or explicitly by calling the soap_new X function for class X. For
example:

class Sample
{ public:
struct soap *soap; // reference to gSOAP’s run-time

é;ample();
“Sample();
b

110

The constructor and destructor for class Sample are:

Sample::Sample()
{ this->soap = NULL;
}

Sample::"Sample()
{ soap_unlink(this->soap, this);

The soap_unlink() call removes the object from gSOAP’s deallocation chain. In that way, soap_destroy
can be safely called to remove all class instances. The following code illustrates the explicit creation
of a Sample object and cleanup:

struct soap *soap = soap_new(); // new gSOAP runtime
Sample *obj = soap_new_Sample(soap); // new Sample object with obj->soap set to runtime

delete obj; // also calls soap_unlink to remove obj from the deallocation chain
soap_destroy(soap); // deallocate all (other) class instances
soap-end(soap); // clean up

Here is another example:

class ns__myClass
struct soap *soap; // set by soap_new_ns__myClass()
char *name;

void setName(const char *s);

-

Calls to soap_new_ns__myClass(soap) will set the soap field in the class instance to the current gSOAP
context. Because the deserializers invoke the soap_new functions, the soap field of the ns__myClass
instances are set as well. This mechanism is convenient when Web Service methods need to return
objects that are instantiated in the methods. For example

int ns__myMethod(struct soap *soap, ...)

{
ns__myClass *p = soap_new_ns__myClass(soap);
p->setName(" SOAP");
return SOAP_OK;

}

void ns__myClass::ns__setName(const char *s)
{
if (soap)
name = (char*)soap_malloc(soap, strlen(s)+1);
else
name = (char*)malloc(strlen(s)+1);
strcpy(name, s);

ns_ _myClass::ns__myClass()

111

{

soap = NULL;

name = NULL;
}
ns__myClass::"ns__myClass()
{

if (!soap && name) free(name);
soap-unlink(soap, this);

}

Calling soap_destroy right after soap_serve in the Web Service will destroy all dynamically allocated
class instances.

9.14 Debugging

To activate debugging and message logging, set the #define DEBUG macro on the compiler’s com-
mand line (typically as a compiler option -DDEBUG) or in stdsoap2.h, and recompile your code
together with stdsoap2.c or stdsoap2.cpp (instead of libgsoap). When using libgsoap and libgsoap++,
reinstall the software with configure using option —enable-debug.

When your client and server applications run, they will log their activity in three separate files:

File Description

SENT.log The SOAP content transmitted by the application

RECV.log The SOAP content received by the application

TEST.log A log containing various activities performed by the application

Caution: The client and server applications may run slow due to the logging activity.

Hint: Set macro DEBUG_STAMP instead of DEBUG to add time stamps to TEST.log. This works on
platforms supporting the gettimeofday function.

Caution: When installing a CGI application on the Web with debugging activated, the log files may
sometimes not be created due to file access permission restrictions imposed on CGI applications.
To get around this, create empty log files with universal write permissions. Be careful about the
security implication of this.

You can test a service CGI application without deploying it on the Web. To do this, create a client
application for the service and activate message logging by this client. Remove any old SENT .log file
and run the client (which connects to the Web service or to another dummy, but valid address) and
copy the SENT .log file to another file, e.g. SENT.tst. Then redirect the SENT tst file to the service
CGI application. For example,

> ./myservice.cgi < SENT .tst

This should display the service response on the terminal.

The file names of the log files and the logging activity can be controlled at the application level.
This allows the creation of separate log files by separate services, clients, and threads. For example,
the following service logs all SOAP messages (but no debug messages) in separate directories:

112

struct soap soap;
soap-init(&soap);

soap_set_recv_logfile(&soap, "logs/recv/servicel2.log”); // append all messages received in /logs/recv/servicel2.log
soap_set_sent_logfile(&soap, "logs/sent/servicel2.log"); // append all messages sent in /logs/sent/servicel2.log
soap_set_test_logfile(&soap, NULL); // no file name: do not save debug messages

soap_serve(&soap);

Likewise, messages can be logged for individual client-side service operation calls.

Generating an Auto Test Server for Client Testing

The soapcpp2 -T option generates an auto-test server application in soapTester.cpp, which is to be
compiled and linked with the code generated for a server implementation, i.e. soapServer.cpp (or with
the generated server object class) and soapC.cpp. The feature also supports C, so use the soapcpp2
-c option to generate C.

The auto-test server can be used to test a client application. Suppose the generated code is
compiled into the executable named tester (compile soapServer.cpp, soapC.cpp, and stdsoap2.cpp or link
libgsoap++). We can use the 10 redirect to “send” it a message saved in a file, for example one of
the sample request messages generated by soapcpp2:

> ./tester < example.req.xml

which then returns the response with default XML values displayed on the terminal.

To run the auto test service on a port to test a client against, use two command-line arguments. The
first argument is the OR-ed values of the gSOAP runtime context flags such as SOAP_IO_KEEPALIVE
(0x10 = 16) and the second argument is the port number:

> ./tester 16 8080

This starts an iterative stand-alone server on port 8080. This way, messages can be sent to
http://localhost:8080 to test the client. The data in the response messages are copied from
the request messages when possible, or XML default values, or empty otherwise.

9.16 Generating Deep Copy and Deletion Code

The soapcpp2 -Ec option generates deep copy code for each type T:

T * soap_dup_T(struct soap*, T *dst, const T *src) deep copy src into dst, replicating all deep cycles
and shared pointers when a managing soap context is provided as argument. When dst is NULL,
allocates space for dst. Deep copy is a tree when argument is NULL, but the presence of deep cycles
will lead to non-termination. Use flag SOAP_XML_TREE with managing context to copy into a tree
without cycles and pointers to shared objects. Returns dst (or allocated space when dst is NULL).

For classes T, also a deep copy method is generated with option -Ec:

113

virtual T * T::soap_dup(struct soap*) const returns a duplicate of this object by deep copying, repli-
cating all deep cycles and shared pointers when a managing soap context is provided as argument.
Deep copy is a tree when argument is NULL, but the presence of deep cycles will lead to non-
termination. Use flag SOAP_XML_TREE with managing context to copy into a tree without cycles
and pointers to shared objects.

The soapcpp2 -Ed option generates deep deletion code for each type T:

void soap_del_T(const T*) deletes all heap-allocated members of this object by deep deletion ONLY
IF this object and all of its (deep) members are not managed by a soap context AND the deep
structure is a tree (no cycles and co-referenced objects by way of multiple (non-smart) pointers
pointing to the same data). Can be safely used after soap_dup(NULL) to delete the deep copy. Does
not delete the object itself.

For classes T, also a deep deletion method is generated with option -Ed:

virtual void T::soap_del() const deletes all heap-allocated members of this object by deep deletion
ONLY IF this object and all of its (deep) members are not managed by a soap context AND the
deep structure is a tree (no cycles and co-referenced objects by way of multiple (non-smart) pointers
pointing to the same data).Can be safely used after soap-dup(NULL) to delete the deep copy. Does
not delete the object itself.

9.17 Required Libraries

e The socket library is essential and requires the inclusion of the appropriate libraries with the
compile command for Sun Solaris systems:

> c++ -0 myclient myclient.cpp stdsoap2.cpp soapC.cpp soapClient.cpp -Isocket -Ixnet -Insl
These library loading options are not required with Linux.

e The gSOAP runtime uses the math library for the NaN, INF, and -INF floating point repre-
sentations. The library is not strictly necessary and the <math.h> header file import can be
commented out from the stdsoap2.h header file. The application can be linked without the -Im
math library e.g. under Sun Solaris:

> c++ -o myclient myclient.cpp stdsoap2.cpp soapC.cpp soapClient.cpp -Isocket -Ixnet -Insl

10 The gSOAP Service Operation Specification Format

A service operation is specified as a C/C++ function prototype in a header file. The function is
REQUIRED to return int, which is used to represent a SOAP error code, see Section 10.2. Multiple
service operations MAY be declared together in one header file.

The general format of a service operation specification is:

[int] [namespace,prefix,,]method,name([inparaml, inparam2,] outparam);

where

114

namespace_prefix__ is the optional namespace prefix of the method (see identifier translation rules 10.3)
method_name it the service operation name (see identifier translation rules 10.3)
inparam is the declaration of an input parameter of the service operation

outparam is the declaration of the output parameter of the service operation

This simple form can only pass a single, non-struct and non-class type output parameter. See 10.1 for
passing multiple output parameters. The name of the declared function namespace_prefix__method_name
must be unique and cannot match the name of a struct, class, or enum declared in the same header

file.

The method request is encoded in SOAP as an XML element and the namespace prefix, method
name, and input parameters are encoded using the format:

< [namespace—pref ix:]methodma.me xsi:type=" [na.mespace—pref ix:]methodlla.me>
<inparam-namel xsi:type="...">...</inparam-namel>
<inparam-name2 xsi:type="...">...</inparam-name2>

</ [name space-prefix:]methodllame>

where the inparam-name accessors are the element-name representations of the inparam parameter
name declarations, see Section 10.3. (The optional parts are shown enclosed in [].)

The XML response by the Web service is of the form:

<[namespace—pref ix:]method—na.meResponse xsi:type=" [na.mespace—pref ix:]method—nameResponse>
<outparam-name xsi:type="...">...</outparam-name>
</ [namespace—pref ix:]method—nameResponse>

where the outparam-name accessor is the element-name representation of the outparam parameter
name declaration, see Section 10.3. By convention, the response element name is the method name
ending in Response. See 10.1 on how to change the declaration if the service response element name
is different.

The gSOAP soapcpp2 tool generates a stub routine for the service operation. This stub is of the

form:

int soap_call_|namespace_prefix_ ,]method,name(struct soap *soap, char *URL, char *action, [inparaml,
inparam?2, ...,| outparam);

This proxy can be called by a client application to perform the service operation call.

The gSOAP soapcpp2 tool generates a skeleton routine for the service operation. The skeleton

function is:

int soap;;erve,[namespace,prefix, ,]method,name(struct soap *soap);

The skeleton routine, when called by a service application, will attempt to serve a request on
the standard input. If no request is present or if the request does not match the method name,
SOAP_NO_METHOD is returned. The skeleton routines are automatically called by the generated
soap_serve routine that handles all requests.

115

10.1 Service Operation Parameter Passing

The input parameters of a service operation MUST be passed by value. Input parameters cannot
be passed by reference with the & reference operator, but an input parameter value MAY be passed
by a pointer to the data. Of course, passing a pointer to the data is preferred when the size of the
data of the parameter is large. Also, to pass instances of (derived) classes, pointers to the instance
need to be used to avoid passing the instance by value which requires a temporary and prohibits
passing derived class instances. When two input parameter values are identical, passing them using
a pointer has the advantage that the value will be encoded only once as multi-reference (hence, the
parameters are aliases). When input parameters are passed using a pointer, the data pointed to
will not be modified by the service operation and returned to the caller.

The output parameter MUST be passed by reference using & or by using a pointer. Arrays are
passed by reference by default and do not require the use of the reference operator &.

The input and output parameter types have certain limitations, see Section 9.10

If the output parameter is a struct or class type, it is considered a service operation response element
instead of a simple output parameter value. That is, the name of the struct or class is the name of
the response element and the struct or class fields are the output parameters of the service operation,
see also 7.1.7. Hence, if the output parameter has to be a struct or class, a response struct or class
MUST be declared as well. In addition, if a service operation returns multiple output parameters,
a response struct or class MUST be declared. By convention, the response element is the service
operation name ending with “Response”.

The general form of a response element declaration is:

struct [na mespace_prefix_ ,] response_element_name

{

outparaml;
outparam?;

-

where

namespace_prefix__ is the optional namespace prefix of the response element (see identifier translation
rules 10.3)

response_element_name it the name of the response element (see identifier translation rules 10.3)

outparam is the declaration of an output parameter of the service operation

The general form of a service operation specification with a response element declaration for (mul-
tiple) output parameters is:

[int] [namespace,prefix,,]method,name([inparaml, inparam2,] struct [namespace,prefix, ,} response_element_name
{outparaml[, outparam?2,]} &anyparam);

The choice of name for anyparam has no effect on the SOAP encoding and decoding and is only used
as a place holder for the response.

116

The method request is encoded in SOAP as an independent element and the namespace prefix,
method name, and input parameters are encoded using the format:

< [namespace—pref ix:]method—name xsi:type=" [namespace—pref ix:]method—name>
<inparam-namel xsi:type="...">...</inparam-namel>
<inparam-name2 xsi:type="...">...</inparam-name2>

</ [na.me space-prefix:]method-na_me>

where the inparam-name accessors are the element-name representations of the inparam parameter
name declarations, see Section 10.3. (The optional parts resulting from the specification are shown
enclosed in [].)

The method response is expected to be of the form:
< [namespace—pref ix:]response—element—name xsi:type=" [namespace—pref ix:]response—element—name>

<outparam-namel xsi:type="...">...</outparam-namel>
<outparam-name2 xsi:type="...">...</outparam-name2>

</ [name space-prefix:]response—element -name>

where the outparam-name accessors are the element-name representations of the outparam parameter
name declarations, see Section 10.3. (The optional parts resulting from the specification are shown
enclosed in [].)

The input and/or output parameters can be made anonymous, which allows the deserialization of
requests/responses with different parameter names as is endorsed by the SOAP 1.1 specification,
see Section 7.1.13.

10.2 Error Codes

The error codes returned by the stub and skeleton routines are listed below.

117

Code

Description

SOAP_OK
SOAP_CLI_FAULT*
SOAP_SVR_FAULT*
SOAP_TAG_MISMATCH
SOAP_TYPE
SOAP_SYNTAX_ERROR
SOAP_NO_TAG
SOAP_IOB
SOAP_MUSTUNDERSTAND*
SOAP_NAMESPACE
SOAP_FATAL_ERROR
SOAP_USER_ERROR
SOAP_FAULT
SOAP_NO_METHOD
SOAP_NO_DATA
SOAP_GET_METHOD
SOAP_EOM
SOAP_MOE
SOAP_NULL
SOAP_DUPLICATE.ID
SOAP_MISSING_ID
SOAP_HREF
SOAP_UTF_ERROR
SOAP_UDP_ERROR
SOAP_TCP_ERROR
SOAP_HTTP_ERROR
SOAP_NTLM_ERROR
SOAP_SSL_ERROR
SOAP_ZLIB_ERROR
SOAP_PLUGIN_ERROR
SOAP_MIME_ERROR
SOAP_MIME_HREF
SOAP_MIME_END
SOAP_DIME_ERROR
SOAP_DIME_END
SOAP_DIME_HREF

SOAP_DIME_MISMATCH
SOAP_VERSIONMISMATCH*
SOAP_DATAENCODINGUNKNOWN
SOAP_REQUIRED
SOAP_PROHIBITED

SOAP_LEVEL

SOAP_OCCURS

SOAP_LENGTH
SOAP_FD_EXCEEDED

SOAP_EOF
SOAP_ERR

No error

The service returned a client fault (SOAP 1.2 Sender fault)
The service returned a server fault (SOAP 1.2 Receiver fault)
An XML element didn’t correspond to anything expected

An XML Schema type mismatch

An XML syntax error occurred on the input

Begin of an element expected, but not found

Array index out of bounds

An element needs to be ignored that need to be understood
Namespace name mismatch (validation error)

Internal error

User error (reserved for soap.user usage

An exception raised by the service

The dispatcher did not find a matching operation for a request
No data in HTTP message

HTTP GET operation not handled, see Section 19.10

Out of memory

Memory overflow/corruption error (DEBUG mode)

An element was null, while it is not supposed to be null
Element’s ID duplicated (multi-ref encoding)

Element ID missing for an href/ref (multi-ref encoding)
Reference to object is incompatible with the object refered to
An UTF-encoded message decoding error occured

Message too large to store in UDP packet

A connection error occured

An HTTP error occured

An NTLM authentication handshake error occured

An SSL error occured

A Zlib error occured

Failed to register plugin

MIME parsing error

MIME attachment has no href from SOAP body error

End of MIME attachments protocol error

DIME formatting error or DIME size exceeds SOAP _MAXDIMESIZE
End of DIME attachments protocol error

DIME attachment has no href from SOAP body

(and no DIME callbacks were defined to save the attachment)
DIME version/transmission error

SOAP version mismatch or no SOAP message

SOAP 1.2 DataEncodingUnknown fault

Attributed required validation error

Attributed prohibited validation error

XML nesting depth level exceeds SOAP_MAXLEVEL

Element minOccurs/maxQOccurs validation error or SOAP_MAXOCCURS exce

Element length validation error or SOAP_MAXLENGTH exceeded
Too many open sockets

(for non-win32 systems not supporting poll())

Unexpected end of file, no input, or timeout receiving data
Error (for internal use)

The error codes that are returned by a stub routine (proxy) upon receiving a SOAP Fault from

118

the server are marked (*). The remaining error codes are generated by the proxy itself as a
result of problems with a SOAP payload. The error code is SOAP_OK when the service op-
eration call was successful (the SOAP_OK predefined constant is guaranteed to be 0). The er-
ror code is also stored in soap.error, where soap is a variable that contains the current runtime
context. The function soap_print_fault(struct soap *soap, FILE *fd) can be called to display an er-
ror message on fd where current value of the soap.error variable is used by the function to dis-
play the error. Use soap_stream_fault(struct soap *soap, std::ostream& os) in C++. The function
soap_print_fault_location(struct soap *soap, FILE *fd) prints the location of the error if the error is a
result from parsing XML. Use soap_print_stream_location(struct soap *soap, std::ostream& os) in C++.
Use soap_sprint_fault(struct soap*, char *buf, size_t len) to print the error to a string.

A service operation implemented in a SOAP service MUST return an error code as the function’s
return value. SOAP_OK denotes success and SOAP_FAULT denotes an exception. The exception
details can be assigned with the soap_receiver_fault(struct soap *soap, const char *faultstring, const
char *detail) which sets the strings soap.fault->faultstring and soap.fault->detail for SOAP 1.1, and
soap.fault->SOAP_ENV_ _Reason and soap.fault->SOAP_ENV_ Detail for SOAP 1.2, where soap is a vari-
able that contains the current runtime context, see Section 12. A receiver error indicates that the
service can’t handle the request, but can possibly recover from the error. To return an unrecov-
erable SOAP 1.1/1.2 error, use soap_sender_fault(struct soap *soap, const char *faultstring, const char
*detail).

To return a HTTP error code a service method can simply return the HT'TP error code number.
For example, return 404; returns a ”404 Not Found” HTTP error back to the client. The soap.error
is set to the HTTP error code at the client side. The HTTP 1.1 error codes are:

119

Error
201 Created
202 Accepted
203 Non-Authoritative Information
204 No Content
205 Reset Content
206 Partial Content
300 Multiple Choices
301 Moved Permanently
302 Found
303 See Other
304 Not Modified
305 Use Proxy
307 Temporary Redirect
400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Time-out
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request-URI Too Large
415 Unsupported Media Type
416 Requested range not satisfiable
417 Expectation Failed
500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Time-out
505 HTTP Version not supported

The error codes are given for informational purposes only. The HTTP protocol requires the proper
actions after an error is issued. gSOAP’s HTTP 1.0/1.1 handling is automatic.

10.3 C/C++ Identifier Name to XML Tag Name Mapping

One of the “secrets” behind the power and flexibility of gSOAP’s encoding and decoding of service
operation names, class names, type identifiers, and struct or class fields is the ability to specify
namespace prefixes with these names that are used to denote their encoding style. More specifically,

a C/C++ identifier name of the form

[na mespace_prefix_ ,] element_name

120

where the prefix and the element name are separated by double underscores will be encoded in
XML as

<[namespace—prefix:]element—name DS

The underscore pair (__) separates the namespace prefix from the element name. Each namespace
prefix has a namespace URI specified by a namespace mapping table 10.4, see also Section 7.1.2.
The namespace URI is a unique identification that can be associated with the service operations
and data types. The namespace URI disambiguates potentially identical service operation names
and data type names used by disparate organizations.

XML element names are NCNames (restricted strings) that MAY contain hyphens, dots, and
underscores. The special characters in the XML element names of service operations, structs,
classes, typedefs, and fields can be controlled using the following conventions: A single underscore
in a namespace prefix or identifier name is replaced by a hyphen (-) in the XML element name. For
example, the identifier name SOAP_ENC_ _ur_type is represented in XML as SOAP-ENC:ur-type. The
sequence _DOT is replaced by a dot (.), and the sequence _USCORE is replaced by an underscore ()
in the corresponding XML element name. For example:

class n_s__biz_DOTcom

{
char *n_s__biz_USCOREname;

¥
is encoded in XML as:

<n-s:biz.com xsi:type="n-s:biz.com">
<n-s:biz_name xsi:type="string">Bizybiz</n-s:biz_name>
</n-s:biz.com>

Trailing underscores of an identifier name are not translated into the XML representation. This is
useful when an identifier name clashes with a C++ keyword. For example, return is often used
as an accessor name in a SOAP response element. The return element can be specified as return_
in the C++ source code. Note that XML should be treated as case sensitive, so the use of e.g.
Return may not always work to avoid a name clash with the return keyword. The use of trailing
underscores also allows for defining structs and classes with essentially the same XML Schema type
name, but that have to be distinguished as seperate C/C++ types.

For decoding, the underscores in identifier names act as wildcards. An XML element is parsed and
matches the name of an identifier if the name is identical to the element name (case insensitive)
and the underscores in the identifier name are allowed to match any character in the element
name. For example, the identifier name | want__soap_fun_the bea___DOTcom matches the element
name I-want:S0AP4fun@the-beach.com.

By default, soapcpp2 generates data bindings in which all XML elements are and attributes are
unqualified:

//gsoap x schema namespace: urn:x
struct x_ _record

121

{
@char * type;
char * name;

h

where the name element and the type attribute are unqualified in the XML content (for example to
facilitate SOAP RPC encoding).

To force qualification of elements and attributes, use the “form” directive:

//gsoap x schema namespace: urn:x
//gsoap x schema form: qualified
struct x_ _record

{
@char * type;
char * name;

h

You can also use “elementForm” and “attributeForm” directives to (un)qualify local element and
attributes, respectively.

Because the soapcpp2-generated serializers follow the qualified/unqualified forms of the schemas,
there is normally no need to explicitly qualify struct/class members because automatic encoding
rules will be used.

If explicit qualification is needed, this can be done using the prefix convention:

//gsoap x schema namespace: urn:x
//gsoap y schema namespace: urn:y
struct x_ _record

{

@char * xsi_ _type;
char * y__name;

h

which ensures that there cannot be any name clashes between members of the same name defined in
different schemas (consider for example name and y__name), but this can clutter the representation
when clashes do not occur.

An alternative to the prefix convention is the use of “colon notation” in the gSOAP header file.
This deviation from the C/C++ syntax allows you to bind type names and struct and class members
to qualified and unqualified XML tag names explicitly, thus bypassing the default mechanism
that automatically qualifies or unqualifies element and attribute tag names based on the schema
element/attribute form.

The colon notation for type names, struct/class names and members overrides the prefix qualifica-
tion rules explicitly:

//gsoap x schema namespace: urn:x
//gsoap y schema namespace: urn:y
struct x:record

{

122

Q@char * xsi:type;
char * y:name;

}

where x and y are namespace prefixes that MUST be declared with a directive. The xsi:type member
is an XML attribute in the xsi namespace. The soapcpp2 tool maps this to the following struct
without the annotations:

// This code is generated from the above by soapcpp?2 in soapStub.h:
struct record

{

char *type; /* optional attribute of type xsd:string */
char *name; /* optional element of type xsd:string */

h

The soapcpp2 tool also generates XML schemas with element and attribute references. That is,
y:name is referenced from the y schema by the x:record complexType defined in the x schema.

The colon notation also allows you to override the element /attribute form to unqualified for qualified
schemas:

//gsoap x schema namespace: urn:x
//gsoap x schema form: qualified
struct x:record

{
@char * :type;
char * :name;

¥

where the colon notation ensures that both type and name are unqualified in the XML content,
which overrides the default qualified forms of the x schema.

Note that the use of colon notation to bind namespace prefixes to type names (typedef, enum,
struct, and class names) translates to code without the prefixes. This means that name clashes can
occur between types with identical unquaified names:

enum x:color { RED, WHITE, BLUE };
enum y:color { YELLOW, ORANGE }; // illegal enum name: name clash with x:color

while prefixing with double underscores never lead to clashes:

enum x__color { RED, WHITE, BLUE };
enum y__color { YELLOW, ORANGE }; // no name clash

Also note that colon notation has a very different role than the C++ scope operator ::. The scope
operator cannot be used in places where we need colon notation, such as struct/class member fields.

The default mechanism that associates XML tag names with the names of struct and class member
fields can be overriden by “retagging” names with the annotation of ‘tag’ placed next to the
member field name. This is particularly useful to support legacy code for which the fixed naming
of member fields cannot be easily changed. For example:

123

//gsoap x schema namespace: urn:x
//gsoap x schema form: qualified
struct x:record

{
@char * t ‘type’;
char * s ‘full-name’;

¥

This maps the t member to the x:type XML attribute tag and s member to the x:full-name XML
element tag. Note that both tags are namespace qualified as per schema declaration.

As of gSOAP 2.8.23, Unicode characters in C/C++ identifiers are accepted by soapcpp2 when the
source file is encoded in UTF8. C/C++ Unicode names are mapped to Unicode XML tags. For
C/C++ source code portability reasons, the wsdl2h tool still converts Unicode XML tag names to
ASCII C/C++ identifiers using the xHHHH naming convention for HHHH character code points.
Option wsdl2h -U maps Unicode letters in XML tag names to UTF8-encoded Unicode letters in
C/C++ identifiers.

10.4 Namespace Mapping Table

A namespace mapping table MUST be defined by clients and service applications. The mapping
table is used by the serializers and deserializers of the stub and skeleton routines to produce a valid
SOAP payload and to validate an incoming SOAP payload. A typical mapping table is shown
below:

struct Namespace namespaces|| =

{ // {'ns-prefix", "ns-name" }
{"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/" }, // MUST be first
{"SOAP-ENC", "http://schemas.xmlsoap.org/soap/encoding/" }, // MUST be second
"xsi”, "http://www.w3.0rg/2001/XMLSchema-instance” }, // MUST be third
{"xsd", "http://www.w3.0rg/2001/XMLSchema"}, // Required for XML Schema types
{"ns1", "urn:my-service-URI" }, // The namespace URI of the service operations
{NULL, NULL} // end of table

Each namespace prefix used by a identifier name in the header file specification (see Section 10.3)
MUST have a binding to a namespace URI in the mapping table. The end of the namespace map-
ping table MUST be indicated by the NULL pair. The namespace URI matching is case insensitive.
A namespace prefix is distinguished by the occurrence of a pair of underscores (-_) in an identifier.

An optional namespace pattern MAY be provided with each namespace mapping table entry. The
patterns provide an alternative namespace matching for the validation of decoded SOAP messages.
In this pattern, dashes (-) are single-character wildcards and asterisks (*) are multi-character wild-
cards. For example, to decode different versions of XML Schema type with different authoring
dates, four dashes can be used in place of the specific dates in the namespace mapping table
pattern:

struct Namespace namespaces|] =
{ // {"ns-prefix”, "ns-name”, " ns-name validation pattern”}

124

instance” },
{"xsd", "http://www.w3.0rg/2001/XMLSchema", "http://www.w3.org/----/XMLSchema" },

Or alternatively, asterisks can be used as wildcards for multiple characters:

struct Namespace namespaces[] =

{ // {'ns-prefix", "ns-name”, " ns-name validation pattern”}

instance” },
{"xsd", "http://www.w3.org/2001/XMLSchema", "http://www.w3.org/* /XMLSchema" },

A namespace mapping table is automatically generated together with a WSDL file for each names-
pace prefix that is used for a service operation specified in the header file. This namespace mapping
table has entries for all namespace prefixes. The namespace URIs need to be filled in. These appear
as http://tempuri.org in the table. See Section 19.2 on how to specify the namespace URIs in the
header file.

For decoding elements with namespace prefixes, the namespace URI associated with the namespace
prefix (through the xmlns attribute of an XML element) is searched from the beginning to the end
in a namespace mapping table, and for every row the following tests are performed as part of the
validation process:

1. the string in the second column matches the namespace URI (case insensitive)

2. the string in the optional third column matches the namespace URI (case insensitive), where
- is a one-character wildcard and * is a multi-character wildcard

When a match is found, the namespace prefix in the first column of the table is considered semanti-
cally identical to the namespace prefix used by the XML element to be decoded, though the prefix
names may differ. A service will respond with the namespace that it received from a client in case
it matches a pattern in the third column.

For example, let’s say we have the following structs:
struct a__elt { ... };

struct b_elt { ... };
struct k__elt { ... };

and a namespace mapping table in the program:

struct Namespace namespaces|| =
{ // {'ns-prefix", "ns-name”, " ns-name validation pattern”}

{"a", "some uri" },

125

{"b", "other uri" },

Then, the following XML elements will match the structs:

<n:elt xmlns:n="some URI"> matches the struct name a__elt
<m:elt xmlns:m="other URI"> matches the struct name b__elt
<k:elt xmlns:k="my URI"> matches the struct name c__elt

The response of a service to a client request that uses the namespaces listed above, will include my
URI for the name space of element k.

It is possible to use a number of different namespace tables and select the one that is appropriate.
For example, an application might contact many different Web services all using different namespace
URIs. If all the URIs are stored in one table, each service operation invocation will dump the whole
namespace table in the SOAP payload. There is no technical problem with that, but it can be ugly
when the table is large. To use different namespace tables, declare a pointer to a table and set the
pointer to a particular table before service operation invocation. For example:

struct Namespace namespacesTablel[] ={ ... };
struct Namespace namespacesTable2[] = { ... };
struct Namespace namespacesTable3[] = { ... };
struct Namespace *namespaces;

struct soap soap;
soap-init(&soap);

soap_set_namespaces(&soap, namespaceTablel);
soap_call_remote_method(&soap, URL, Action, ...);

11 gSOAP Serialization and Deserialization Rules

This section describes the serialization and deserialization of C and C++ data types for SOAP 1.1
and 1.2 compliant encoding and decoding.

11.1 SOAP RPC Encoding Versus Document /Literal and xsi:type Info

The wsdl2h tool automatically generates a header file specialized for SOAP RPC encoding or
document /literal style. The serialization and deserialization rules for C/C++ objects is almost
identical for these styles, except for the following important issues.

With SOAP RPC encoding style, care must be taken to ensure typed messages are produced
for interoperability and compatibility reasons. To ensure that the gSOAP engine automatically

126

generates typed (xsi:type attributed) messages, use soapcpp2 option -t, see also Section 9.1. While
gSOAP can handle untyped messages, some toolkits fail to find deserializers when the xsi:type
information is absent.

When starting the development of a gSOAP application from a header file, the soapcpp2 compiler
will generate WSDL and schema files for SOAP 1.1 document/literal style by default (use the
//gsoap directives to control this, see Section 19.2). Use soapcpp2 options -2, -e, and -t to generate
code for SOAP 1.2, RPC encoding, and typed messages.

With SOAP RPC encoding, generic complexTypes with maxOccurs="unbounded" are not allowed and
SOAP encoded arrays must be used. Also XML attributes and unions (XML schema choice) are
not allowed with SOAP RPC encoding.

Also with SOAP RPC encoding, multi-reference accessors are common to encode co-referenced
objects and object digraphs. Multi-reference encoding is not supported in document/literal style,
which means that cyclic object digraphs cannot be serialized (the engine will crash). Also DAGs
are represented as XML trees in document/literal style messaging.

11.2 Primitive Type Encoding

The default encoding rules for the primitive C and C++ data types are given in the table below:

Type XSD Type
bool boolean

char* (C string) string

char byte

long double decimal (with #import ”custom/long_double.h”)
double double

float float

int int

long long

LONG64 long

long long long

short short

time_t dateTime
struct tm dateTime (with #import ”custom/struct_tm.h”)
unsigned char unsignedByte
unsigned int unsignedInt
unsigned long unsignedLong
ULONG64 unsignedLong
unsigned long long unsignedLong
unsigned short unsignedShort
wchar_t* string

Objects of type void and void* cannot be encoded. Enumerations and bit masks are supported as
well, see 11.4.

127

11.3 How to Represent Primitive C/C++ Types as XSD Types

By default, encoding of the primitive types will take place as per SOAP encoding style. The
encoding can be changed to any XML Schema type (XSD type) with an optional namespace prefix
by using a typedef in the header file input to the gSOAP soapcpp2 tool. The declaration enables the
implementation of built-in XML Schema types (also known as XSD types) such as positiveInteger,
xsd:anyURI, and xsd:date for which no built-in data structures in C and C++ exist but which can
be represented using standard data structures such as strings, integers, and floats.

The typedef declaration is frequently used for convenience in C. A typedef declares a type name
for a (complex) type expression. The type name can then be used in other declarations in place of
the more complex type expression, which often improves the readability of the program code.

The gSOAP soapcpp2 compiler interprets typedef declarations the same way as a regular C compiler
interprets them, i.e. as types in declarations. In addition however, the gSOAP soapcpp2 compiler
will also use the type name in the encoding of the data in SOAP. The typedef name will appear as
the XML element name of an independent element and as the value of the xsi:type attribute in
the SOAP payload.

Many built-in primitive and derived XSD types such as xsd:anyURI, positiveInteger, and decimal
can be stored by standard primitive data structures in C++4, such as strings, integers, floats, and
doubles. To serialize strings, integers, floats, and doubles as built-in primitive and derived XSD
types, a typedef declaration can be used to declare an XSD type.

For example, the declaration

typedef unsigned int xsd__positivelnteger;

creates a named type positivelnteger which is represented by unsigned int in C++4. For example, the
encoding of a positivelnteger value 3 is

<positivelInteger xsi:type="xsd:positivelnteger">3</positiveIlnteger>

The built-in primitive and derived numerical XML Schema types are listed below together with
their recommended typedef declarations. Note that the SOAP encoding schemas for primitive types
are derived from the built-in XML Schema types, so SOAP_ENC__ can be used as a namespace prefix
instead of xsd__.

xsd:anyURI Represents a Uniform Resource Identifier Reference (URI). Each URI scheme imposes
specialized syntax rules for URIs in that scheme, including restrictions on the syntax of
allowed fragment identifiers. It is recommended to use strings to store xsd:anyURI XML
Schema types. The recommended type declaration is:

typedef char *xsd__anyURI;

xsd:base64Binary Represents Base64-encoded arbitrary binary data. For using the xsd:base64Binary
XSD Schema type, the use of the base64Binary representation of a dynamic array is strongly
recommended, see Section 11.12. However, the type can also be declared as a string and the
encoding will be string-based:

128

typedef char *xsd__base64Binary;

With this approach, it is the responsibility of the application to make sure the string content
is according to the Base64 Content-Transfer-Encoding defined in Section 6.8 of RFC 2045.

xsd:boolean For declaring an xsd:boolean XSD Schema type, the use of a bool is strongly recom-
mended. If a pure C compiler is used that does not support the bool type, see Section 11.4.5.
The corresponding type declaration is:

typedef bool xsd__boolean;
Type xsd__boolean declares a Boolean (0 or 1), which is encoded as
<xsd:boolean xsi:type="xsd:boolean">...</xsd:boolean>
xsd:byte Represents a byte (-128...127). The corresponding type declaration is:
typedef char xsd__byte;
Type xsd__byte declares a byte which is encoded as
<xsd:byte xsi:type="xsd:byte">...</xsd:byte>

xsd:dateTime Represents a date and time. The lexical representation is according to the ISO
8601 extended format CCYY-MM-DDThh:mm:ss where ”CC” represents the century, ”YY”
the year, ”MM?” the month and "DD” the day, preceded by an optional leading ”-” sign to
indicate a negative number. If the sign is omitted, ”+” is assumed. The letter ”T” is the
date/time separator and "hh”, ”mm”, ”ss” represent hour, minute and second respectively.
It is recommended to use the time_t type to store xsd:dateTime XSD Schema types and the

type declaration is:
typedef time_t xsd_ _dateTime;

However, note that calendar times before the year 1902 or after the year 2037 cannot be
represented. Upon receiving a date outside this range, the time_t value will be set to -1.

Strings (char*) can be used to store xsd:dateTime XSD Schema types. The type declaration
is:

typedef char *xsd__dateTime;
In this case, it is up to the application to read and set the dateTime representation.

xsd:date Represents a date. The lexical representation for date is the reduced (right truncated)
lexical representation for dateTime: CCYY-MM-DD. It is recommended to use strings (char*)
to store xsd:date XSD Schema types. The type declaration is:

typedef char *xsd_ _date;

xsd:decimal Represents arbitrary precision decimal numbers. It is recommended to use the double
type to store xsd:decimal XSD Schema types and the type declaration is:

typedef double xsd_ _decimal,

129

Type xsd_ _decimal declares a double floating point number which is encoded as

<xsd:double xsi:type="xsd:decimal">...</xsd:double>

xsd:double Corresponds to the IEEE double-precision 64-bit floating point type. The type decla-
ration is:

typedef double xsd__double;

Type xsd__double declares a double floating point number which is encoded as

<xsd:double xsi:type="xsd:double">...</xsd:double>

xsd:duration Represents a duration of time. The lexical representation for duration is the ISO
8601 extended format PnYn MnDTnH nMnS, where nY represents the number of years, nM
the number of months, nD the number of days, T is the date/time separator, nH the number
of hours, nM the number of minutes and nS the number of seconds. The number of seconds
can include decimal digits to arbitrary precision. It is recommended to use strings (char*) to
store xsd:duration XSD Schema types. The type declaration is:

typedef char *xsd_ _duration;

xsd:float Corresponds to the IEEE single-precision 32-bit floating point type. The type declara-
tion is:

typedef float xsd_ float;

Type xsd_ _float declares a floating point number which is encoded as

<xsd:float xsi:type="xsd:float">...</xsd:float>

xsd:hexBinary Represents arbitrary hex-encoded binary data. It has a lexical representation where
each binary octet is encoded as a character tuple, consisting of two hexadecimal digits ([0-9a~
fA-F]) representing the octet code. For example, "0FB7” is a hex encoding for the 16-bit in-
teger 4023 (binary representation is 111110110111. For using the xsd:hexBinary XSD Schema
type, the use of the hexBinary representation of a dynamic array is strongly recommended,
see Section 11.13. However, the type can also be declared as a string and the encoding will
be string-based:

typedef char *xsd_ _hexBinary;

With this approach, it is solely the responsibility of the application to make sure the string
content consists of a sequence of octets.

xsd:int Corresponds to a 32-bit integer in the range -2147483648 to 2147483647. If the C++
compiler supports 32-bit int types, the type declaration can use the int type:

typedef int xsd__int;

Otherwise, the C++ compiler supports 16-bit int types and the type declaration should use
the long type:

typedef long xsd_ _int;

130

Type xsd__int declares a 32-bit integer which is encoded as

<xsd:int xsi:type="xsd:int">...</xsd:int>

xsd:integer Corresponds to an unbounded integer. Since C++ does not support unbounded inte-
gers as a standard feature, the recommended type declaration is:

typedef long long xsd_ _integer;
Type xsd__integer declares a 64-bit integer which is encoded as an unbounded xsd:integer:
<xsd:integer xsi:type="xsd:integer">...</xsd:integer>

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

xsd:long Corresponds to a 64-bit integer in the range -9223372036854775808 to 9223372036854775807.

The type declaration is:
typedef long long xsd_ _long;

Or in Visual C++:
typedef LONG64 xsd_ _long;

Type xsd__long declares a 64-bit integer which is encoded as
<xsd:long xsi:type="xsd:long">...</xsd:long>

xsd:negativeInteger Corresponds to a negative unbounded integer (< 0). Since C++ does not
support unbounded integers as a standard feature, the recommended type declaration is:

typedef long long xsd_ _negativelnteger;
Type xsd_ _negativelnteger declares a 64-bit integer which is encoded as a xsd:negativeInteger:
<xsd:negativeInteger xsi:type="xsd:negativeIlnteger">...</xsd:negativelnteger>

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

xsd:nonNegativeInteger Corresponds to a non-negative unbounded integer (> 0). Since C++ does
not support unbounded integers as a standard feature, the recommended type declaration is:

typedef unsigned long long xsd__nonNegativelnteger;

Type xsd__nonNegativelnteger declares a 64-bit unsigned integer which is encoded as a non-
negative unbounded xsd:nonNegativeInteger:

<xsd:nonNegativelnteger xsi:type="xsd:nonNegativeInteger">...</xsd:nonNegativeInteger>

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

131

xsd:nonPositiveInteger Corresponds to a non-positive unbounded integer (< 0). Since C++ does
not support unbounded integers as a standard feature, the recommended type declaration is:

typedef long long xsd_ _nonPositivelnteger;
Type xsd_ _nonPositivelnteger declares a 64-bit integer which is encoded as a xsd:nonPositiveInteger:
<xsd:nonPositivelInteger xsi:type="xsd:nonPositiveInteger">...</xsd:nonPositiveInteger>

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

xsd:normalizedString Represents normalized character strings. Normalized character strings do
not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters. It is
recommended to use strings to store xsd:normalizeString XSD Schema types. The type
declaration is:

typedef char *xsd_ _normalizedString;
Type xsd__normalizedString declares a string type which is encoded as
<xsd:normalizedString xsi:type="xsd:normalizedString">...</xsd:normalizedString>

It is solely the responsibility of the application to make sure the strings do not contain carriage
return (#xD), line feed (#xA) and tab (#x9) characters.

xsd:positiveInteger Corresponds to a positive unbounded integer (> 0). Since C++ does not
support unbounded integers as a standard feature, the recommended type declaration is:

typedef unsigned long long xsd_ _positivelnteger;
Type xsd_ _positivelnteger declares a 64-bit unsigned integer which is encoded as a xsd:positiveInteger:
<xsd:positiveInteger xsi:type="xsd:positiveInteger">...</xsd:positivelnteger>

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

xsd:short Corresponds to a 16-bit integer in the range -32768 to 32767. The type declaration is:
typedef short xsd_ _short;
Type xsd_ _short declares a short 16-bit integer which is encoded as
<xsd:short xsi:type="xsd:short">...</xsd:short>
xsd:string Represents character strings. The type declaration is:
typedef char *xsd_ _string;
Type xsd_ string declares a string type which is encoded as
<xsd:string xsi:type="xsd:string">...</xsd:string>

The type declaration for wide character strings is:

132

typedef wchar_t *xsd_ _string;

Both type of strings can be used at the same time, but requires one typedef name to be
changed by appending an underscore which is invisible in XML. For example:

typedef wchar_t *xsd_ _string_;

xsd:time Represents a time. The lexical representation for time is the left truncated lexical rep-
resentation for dateTime: hh:mm:ss.sss with optional following time zone indicator. It is
recommended to use strings (char*) to store xsd:time XSD Schema types. The type declara-
tion is:

typedef char *xsd_ _time;

xsd:token Represents tokenized strings. Tokens are strings that do not contain the line feed (#xA)
nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no
internal sequences of two or more spaces. It is recommended to use strings to store xsd:token
XSD Schema types. The type declaration is:

typedef char *xsd__token;
Type xsd_ _token declares a string type which is encoded as
<xsd:token xsi:type="xsd:token">...</xsd:token>

It is solely the responsibility of the application to make sure the strings do not contain the
line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and
that have no internal sequences of two or more spaces.

xsd:unsignedByte Corresponds to an 8-bit unsigned integer in the range 0 to 255. The type decla-
ration is:

typedef unsigned char xsd_ _unsignedByte;
Type xsd_ _unsignedByte declares a unsigned 8-bit integer which is encoded as
<xsd:unsignedByte xsi:type="xsd:unsignedByte">...</xsd:unsignedByte>

xsd:unsignedInt Corresponds to a 32-bit unsigned integer in the range 0 to 4294967295. If the
C++ compiler supports 32-bit int types, the type declaration can use the int type:

typedef unsigned int xsd__unsignedint;

Otherwise, the C++ compiler supports 16-bit int types and the type declaration should use
the long type:

typedef unsigned long xsd_ _unsignedInt;
Type xsd_ _unsignedInt declares an unsigned 32-bit integer which is encoded as
<xsd:unsignedInt xsi:type="xsd:unsignedInt">...</xsd:unsignedInt>
xsd:unsignedLong Corresponds to a 64-bit unsigned integer in the range 0 to 18446744073709551615.
The type declaration is:

133

typedef unsigned long long xsd_ _unsignedlLong;

Or in Visual C++:
typedef ULONG64 xsd_ _unsignedlLong;

Type xsd_ _unsignedLong declares an unsigned 64-bit integer which is encoded as
<xsd:unsignedLong xsi:type="xsd:unsignedLong">...</xsd:unsignedLong>

xsd:unsignedShort Corresponds to a 16-bit unsigned integer in the range 0 to 65535. The type
declaration is:

typedef unsigned short xsd_ _unsignedShort;

Type xsd_ _unsginedShort declares an unsigned short 16-bit integer which is encoded as

<xsd:unsignedShort xsi:type="xsd:unsignedShort">...</xsd:unsignedShort>

Other XSD Schema types such as gYearMonth, gYear, gMonthDay, gDay, xsd:gMonth, QName, NOTATION,
etc., can be encoded similarly using a typedef declaration.

11.3.1 How to Use Multiple C/C++ Types for a Single Primitive XSD Type

Trailing underscores (see Section 10.3) can be used in the type name in a typedef to enable the
declaration of multiple storage formats for a single XML Schema type. For example, one part
of a C/C++ application’s data structure may use plain strings while another part may use wide
character strings. To enable this simultaneous use, declare:

typedef char *xsd_ _string;
typedef wchar_t *xsd_ _string_;

Now, the xsd__string and xsd_ _string_ types will both be encoded and decoded as XML string types
and the use of trailing underscores allows multiple declarations for a single XML Schema type.

11.3.2 How to use C++ Wrapper Classes to Specify Polymorphic Primitive Types

SOAP 1.1 supports polymorphic types, because XSD Schema types form a hierarchy. The root of
the hierarchy is called xsd:anyType (xsd:ur-type in the older 1999 schema). So, for example, an
array of xsd:anyType in SOAP may actually contain any mix of element types that are the derived
types of the root type. The use of polymorphic types is indicated by the WSDL and schema
descriptions of a Web service and can therefore be predicted/expected for each particular case.

On the one hand, the typedef construct provides a convenient way to associate C/C++ types with
XML Schema types and makes it easy to incorporate these types in a (legacy) C/C++ application.
However, on the other hand the typedef declarations cannot be used to support polymorphic XML
Schema types. Most SOAP clients and services do not use polymorphic types. In case they do,
the primitive polymorphic types can be declared as a hierarchy of C++ classes that can be used
simultaneously with the typedef declarations.

The general form of a primitive type declaration that is derived from a super type is:

134

class xsd_ _type_name: [public xsd_ _super_type_name
{ public: Type __item;

[public:] [private] [protected:]
methodl;
method?2;

-

where Type is a primitive C type. The __item field MUST be the first field in this wrapper class.

For example, the XML Schema type hierarchy can be copied to C++ with the following declarations:

class xsd__anyType { };

class xsd__anySimpleType: public xsd__anyType { };

typedef char *xsd__anyURI;

class xsd__anyURI_: public xsd__anySimpleType { public: xsd__anyURI __item; };

typedef bool xsd__boolean;

class xsd_ _boolean_: public xsd_ _anySimpleType { public: xsd-_boolean __item; };

typedef char *xsd__date;

class xsd__date_: public xsd__anySimpleType { public: xsd__date __item; };

typedef time_t xsd_ _dateTime;

class xsd__dateTime_: public xsd__anySimpleType { public: xsd__dateTime __item; };

typedef double xsd_ _double;

class xsd_ _double_: public xsd__anySimpleType { public: xsd_ _double __item; };

typedef char *xsd_ _duration;

class xsd__duration_: public xsd__anySimpleType { public: xsd_ _duration __item; };

typedef float xsd_ float;

class xsd_ _float_: public xsd__anySimpleType { public: xsd_ _float __item; };

typedef char *xsd__time;

class xsd__time_: public xsd__anySimpleType { public: xsd__time __item; };

typedef char *xsd__decimal;

class xsd__decimal_: public xsd__anySimpleType { public: xsd__decimal __item; };

typedef char *xsd_ _integer;

class xsd- _integer_: public xsd__decimal_ { public: xsd__integer __item; };

typedef LONG64 xsd__long;

class xsd__long_: public xsd__integer_ { public: xsd__long __item; };

typedef long xsd_ _int;

class xsd__int_: public xsd__long_ { public: xsd__int __item; };

typedef short xsd__short;

class xsd_ _short_: public xsd__int_ { public: xsd_ _short __item; };

typedef char xsd_ _byte;

class xsd__byte_: public xsd__short_ { public: xsd__byte __item; };

typedef char *xsd__nonPositivelnteger;

class xsd_ _nonPositivelnteger_: public xsd__integer_ { public: xsd__nonPositivelnteger _ _item; };
typedef char *xsd_ _negativelnteger;

class xsd_ _negativelnteger_: public xsd_ _nonPositivelnteger_ { public: xsd__negativelnteger _ _item;
b

typedef char *xsd_ _nonNegativelnteger;

class xsd_ _nonNegativelnteger_: public xsd_ _integer_ { public: xsd__nonNegativelnteger __item; };
typedef char *xsd_ _positivelnteger,;

class xsd_ _positivelnteger_: public xsd__nonNegativelnteger_ { public: xsd_ _positivelnteger _ _item;

¥

135

typedef ULONG64 xsd_ _unsignedlLong;
class xsd_ _unsignedLong_: public xsd__nonNegativelnteger_ { public: xsd__unsignedLong _ _item;

h

typedef unsigned long xsd_ _unsignedInt;

class xsd_ _unsignedInt_: public xsd__unsginedLong_ { public: xsd__unsignedInt __item; };
typedef unsigned short xsd_ _unsignedShort;

class xsd_ _unsignedShort_: public xsd_ _unsignedint_ { public: xsd__unsignedShort __item; };
typedef unsigned char xsd__unsignedByte;

class xsd_ _unsignedByte_: public xsd_ _unsignedShort_ { public: xsd__unsignedByte _ _item; };
typedef char *xsd_ _string;

class xsd_ _string_: public xsd__anySimpleType { public: xsd_ _string __item; };

typedef char *xsd__normalizedString;

class xsd__normalizedString_: public xsd_ string_ { public: xsd__normalizedString __item; };
typedef char *xsd_ _token;

class xsd_ _token_: public xsd_ _normalizedString_ { public: xsd__token __item; };

Note the use of the trailing underscores for the class names to distinguish the typedef type names
from the class names. Only the most frequently used built-in schema types are shown. It is also
allowed to include the xsd:base64Binary and xsd:hexBinary types in the hierarchy:

class xsd__base64Binary: public xsd__anySimpleType { public: unsigned char *_ _ptr; int _ size;

¥

class xsd__hexBinary: public xsd_ _anySimpleType { public: unsigned char *__ptr; int __size; };

See Sections 11.12 and 11.13.

Methods are allowed to be added to the classes above, such as constructors and getter/setter
methods, see Section 11.6.4.

Wrapper structs are supported as well, similar to wrapper classes. But they cannot be used to
implement polymorphism. Rather, the wrapper structs facilitate the use of XML attributes with a
primitive typed object, see 11.6.7.

11.3.3 XSD Schema Type Decoding Rules

The decoding rules for the primitive C and C++ data types is given in the table below:

136

Type Allows Decoding of Precision Lost?
bool [xsd:]bcolean no
char* (C string) any type, see 11.3.5 no
wchar_t * (wide string) any type, see 11.3.5 no
double xsd:|double no
xsd:|float no
xsd:|long no
xsd:|int no
xsd: [short no
xsd: |byte no
xsd: |unsignedLong no
xsd:|unsignedInt no
xsd:|unsignedShort no
xsd:|unsignedByte no
xsd:|decimal possibly
xsd:|integer possibly
xsd: |positivelnteger possibly
xsd: |negativeInteger possibly
xsd: |nonPositiveInteger possibly
xsd: |[nonNegativeInteger possibly
float xsd: |float no
xsd:|long no
xsd:|int no
xsd:|short no
xsd: |byte no
xsd: |unsignedlLong no
xsd:|unsignedInt no
xsd: |unsignedShort no
xsd:|unsignedByte no
xsd:|decimal possibly
xsd:|integer possibly
xsd:|positiveInteger possibly
xsd: |negativelnteger possibly
xsd: |lnonPositiveInteger possibly
xsd: |nonNegativeInteger possibly
long long xsd:|long no
xsd:|int no
xsd:|short no
xsd: |byte no
xsd: |unsignedLong possibly
xsd:|unsignedInt no
xsd: |unsignedShort no
xsd:|unsignedByte no
xsd: |integer possibly
xsd:|positivelnteger possibly
xsd: |negativelnteger possibly
xsd: |lnonPositiveInteger possibly
xsd: |[nonNegativeInteger possibly

137

Type Allows Decoding of Precision Lost?

long xsd:|long possibly, if long is 32 bit
xsd:|int no
xsd:|short no
xsd: |byte no
xsd: |unsignedLong possibly
xsd: |junsignedInt no
xsd: |unsignedShort no
xsd: |lunsignedByte no
int xsd:|int no
xsd:|short no
xsd: |byte no
xsd: |unsignedInt possibly
xsd: |lunsignedShort no
xsd:|unsignedByte no
short xsd: [short no
xsd: |byte no
xsd: junsignedShort no
xsd:|unsignedByte no
char xsd:|byte no
xsd: |unsignedByte possibly
unsigned long long |xsd:|unsignedLong no
xsd: |unsignedInt no
xsd: |lunsignedShort no
xsd: |lunsignedByte no
xsd:|positiveInteger possibly
xsd: |nonNegativeInteger possibly
unsigned long xsd: |unsignedLong possibly, if long is 32 bit
xsd: |lunsignedInt no
xsd: |unsignedShort no
xsd: |lunsignedByte no
unsigned int xsd: |unsignedInt no
xsd: |lunsignedShort no
xsd: |unsignedByte no
unsigned short xsd: |unsignedShort no
xsd: |lunsignedByte no
unsigned char [xsd:]unsignedByte no
time_t [xsd:]dateTime no(?)

Due to limitations in representation of certain primitive C+-+ types, a possible loss of accuracy may

138

occur with the decoding of certain XSD Schema types as is indicated in the table. The table does
not indicate the possible loss of precision of floating point values due to the textual representation
of floating point values in SOAP.

All explicitly declared XSD Schema encoded primitive types adhere to the same decoding rules.
For example, the following declaration:

typedef unsigned long long xsd__nonNegativelnteger;

enables the encoding and decoding of xsd:nonNegativeInteger XSD Schema types (although de-
coding takes place with a possible loss of precision). The declaration also allows decoding of
xsd:positiveInteger XSD Schema types, because of the storage as a unsigned long long data type.

11.3.4 Multi-Reference Strings

If more than one char pointer points to the same string, the string is encoded as a multi-reference
value. Consider for example

char *s = "hello”, *t = s;

The s and t variables are assigned the same string, and when serialized, t refers to the content of s:
<string id="123" xsi:type="string">hello</string>
;;éring href="#123"/>

The example assumed that s and t are encoded as independent elements.

Note: the use of typedef to declare a string type such as xsd__string will not affect the multi-reference
string encoding. However, strings declared with different typedefs will never be considered multi-
reference even when they point to the same string. For example

typedef char *xsd_ _string;

typedef char *xsd__anyURI;

xsd__anyURI *s = "http://www.myservice.com”;
xsd_ _string *t = s;

The variables s and t point to the same string, but since they are considered different types their
content will not be shared in the SOAP payload through a multi-referenced string.

11.3.5 “Smart String” Mixed-Content Decoding

The implementation of string decoding in gSOAP allows for mixed content decoding. If the SOAP
payload contains a complex data type in place of a string, the complex data type is decoded in the
string as plain XML text.

For example, suppose the getlnfo service operation returns some detailed information. The service
operation is declared as:

139

// Contents of header file " getInfo.h":
getInfo(char *detail);

The proxy of the service is used by a client to request a piece of information and the service responds
with:

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: nnn

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

<SOAP-ENV:Body>

<getInfoResponse>

<detail>

<picture>Mona Lisa by <i>Leonardo da Vinci</i></picture>

</detail>

</getInfoResponse>

</S0AP-ENV:Body>

</SOAP-ENV:Envelope>

As a result of the mixed content decoding, the detail string contains “<picture>Mona Lisa by
<i>Leonardo da Vinci</i></picture>”.

11.3.6 C+H+ Strings

gSOAP supports C++ strings std::string and std::wstring wide character strings. For example:

typedef std::string xsd_ _string;

class ns__myClass

{ public:
xsd_ _string s; // serialized with xsi:type="xsd:string"
std::string t; // serialized without xsi:type

b
Caution: Please avoid mixing std::string and C strings (char*) in the header file when using SOAP

1.1 encoding. The problem is that multi-referenced strings in SOAP encoded messages cannot be
assigned simultaneously to a std::string and a char* string.

11.3.7 Changing the Encoding Precision of float and double Types

The double encoding format is by default set to “%.18G” (see a manual on printf text formatting in
C), i.e. at most 18 digits of precision to limit a loss in accuracy. The float encoding format is by
default “%.9G”, i.e. at most 9 digits of precision.

The encoding format of a double type can be set by assigning a format string to soap.double_format,
where soap is a variable that contains the current runtime context. For example:

140

struct soap soap;
soap-init(&soap); // sets double_format = " %.18G"
soap.double_format = "%e"; // redefine

which causes all doubles to be encoded in scientific notation. Likewise, the encoding format of a

float type can be set by assigning a format string to the static soap_float_format string variable. For
example:

struct soap soap;
soap-init(&soap); // sets float_format = " %.9G"
soap.float_format = " %.4f"; // redefine

which causes all floats to be encoded with four digits precision.

Caution: The format strings are not automatically reset before or after SOAP communications.
An error in the format string may result in the incorrect encoding of floating point values.

A special case for C format string patterns is introduced in gSOAP 2.8.18. A C format string that
is used as a pattern for a typedef float or double in the gSOAP header file is used to format the
output of the floating point value in XML. For example:

typedef float time_ _ratio " %5.2f";

This will output the float with 5 digits total and 2 digits after the decimal point.

When xs:totalDigits and xs:fractionDigits are given in a XSD file, then also a C format string
is produced to output floating point values with the proper precision and scale. For example:

<simpleType name="ratio">
<restriction base="xsd:float">
<totalDigits value="5"/>
<fractionDigits value="2"/>
</restriction>
</simpleType>

11.3.8 INF, -INF, and NaN Values of float and double Types

The gSOAP runtime stdsoap2.cpp and header file stdsoap2.h support the marshalling of IEEE INF,
-INF, and NaN representations. Under certain circumstances this may break if the hardware and /or
C/C++ compiler does not support these representations. To remove the representations, remove
the inclusion of the <math.h> header file from the stdsoap2.h file. You can control the representations
as well, which are defined by the macros:

#define FLT_NAN
#define FLT_PINFTY
#define FLT_NINFTY
#define DBL_NAN
#define DBL_PINFTY
#define DBL_NINFTY

141

11.4 Enumeration Serialization

Enumerations are generally useful for the declaration of named integer-valued constants, also called
enumeration constants.

11.4.1 Serialization of Symbolic Enumeration Constants

The gSOAP soapcpp2 tool encodes the constants of enumeration-typed variables in symbolic form
using the names of the constants when possible to comply to SOAP’s enumeration encoding style.
Consider for example the following enumeration of weekdays:

enum weekday {Mon, Tue, Wed, Thu, Fri, Sat, Sun};

The enumeration-constant Mon, for example, is encoded as

<weekday xsi:type="weekday">Mon</weekday>

The value of the xsi:type attribute is the enumeration-type identifier’s name. If the element is
independent as in the example above, the element name is the enumeration-type identifier’s name.

The encoding of complex types such as enumerations requires a reference to an XML Schema
through the use of a namespace prefix. The namespace prefix can be specified as part of the
enumeration-type identifier’s name, with the usual namespace prefix conventions for identifiers.
This can be used to explicitly specify the encoding style. For example:

enum nsl__weekday {Mon, Tue, Wed, Thu, Fri, Sat, Sun};

The enumeration-constant Sat, for example, is encoded as:

<nsl:weekday xsi:type="nsl:weekday">Sat</nsl:weekday>

The corresponding XML Schema for this enumeration data type would be:

<xsd:element name="weekday" type="tns:weekday"/>
<xsd:simpleType name="weekday">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Mon"/>
<xsd:enumeration value="Tue"/>
<xsd:enumeration value="Wed"/>
<xsd:enumeration value="Thu"/>
<xsd:enumeration value="Fri"/>
<xsd:enumeration value="Sat"/>
<xsd:enumeration value="Sun"/>
</xsd:restriction>
</xsd:simpleType>

142

11.4.2 Encoding of Enumeration Constants

If the value of an enumeration-typed variable has no corresponding named constant, the value is
encoded as a signed integer literal. For example, the following declaration of a workday enumeration
type lacks named constants for Saturday and Sunday:

enum nsl__workday {Mon, Tue, Wed, Thu, Fri};

If the constant 5 (Saturday) or 6 (Sunday) is assigned to a variable of the workday enumeration type,
the variable will be encoded with the integer literals 5 and 6, respectively. For example:

<nsl:workday xsi:type="nsl:workday">5</nsl:workday>

Since this is legal in C++ and SOAP allows enumeration constants to be integer literals, this
method ensures that non-symbolic enumeration constants are correctly communicated to another
party if the other party accepts literal enumeration constants (as with the gSOAP soapcpp2 tool).

Both symbolic and literal enumeration constants can be decoded.
To enforce the literal enumeration constant encoding and to get the literal constants in the WSDL
file, use the following trick:

enumnsl__nums{_1=1 2=2 3=3}

The difference with an enumeration type without a list of values and the enumeration type above
is that the enumeration constants will appear in the WSDL service description.

11.4.3 Initialized Enumeration Constants
The gSOAP soapcpp2 compiler supports the initialization of enumeration constants, as in:

enum nsl__relation {LESS = -1, EQUAL = 0, GREATER = 1};

The symbolic names LESS, EQUAL, and GREATER will appear in the SOAP payload for the encoding
of the nsl__relation enumeration values -1, 0, and 1, respectively.

11.4.4 How to “Reuse” Symbolic Enumeration Constants

A well-known deficiency of C and C++ enumeration types is the lack of support for the reuse
of symbolic names by multiple enumerations. That is, the names of all the symbolic constants
defined by an enumeration cannot be reused by another enumeration. To force encoding of the
same symbolic name by different enumerations, the identifier of the symbolic name can end in an
underscore (_) or any number of underscores to distinguish it from other symbolic names in C++.
This guarantees that the SOAP encoding will use the same name, while the symbolic names can
be distinguished in C++. Effectively, the underscores are removed from a symbolic name prior to
encoding.

Consider for example:

143

enum nsl__workday {Mon, Tue, Wed, Thu, Fri};
enum nsl__weekday {Mon_, Tue_, Wed_, Thu_, Fri_, Sat_, Sun_};

which will result in the encoding of the constants of enum nsl__weekday without the underscore, for
example as Mon.

As an alternative to the trailing underscores that can get quite long for commonly used symbolic
enum names, you can use the following convention with double underscores to add the enum name
to the enum constants:

enum prefixedname { prefixedname__enumconstl, prefixedname_ _enumconst2, ... };

where the type name of the enumeration prefixedname is a prefixed name, such as:

enum nsl__workday { nsl__workday-_Mon, nsl__workday__Tue, nsl__workday_-_Wed, nsl__workday__Thu,
nsl__workday__Fri };

enum nsl__weekday { nsl__workday__Mon, nsl__workday__Tue, ns1__workday__Wed, nsl1__workday__Thu,
nsl__workday__Fri, ns1__workday__Sat, ns1__workday__Sun };

This ensures that the XML schema enumeration values are still simply Mon, Tue, Wed, Thu, Fri, Sat,
and Sun.

Caution: The following declaration:

enum nsl__workday {Mon, Tue, Wed, Thu, Fri};
enum nsl__weekday {Sat = 5, Sun = 6};

will not properly encode the weekday enumeration when you assume that workdays are part of
weekdays, because it lacks the named constants for workday in its enumeration list. All enumerations
must be self-contained and cannot use enum constants of other enumerations.

11.4.5 Boolean Enumeration Serialization for C

When developing a C Web service application, the C++ bool type should not be used since it is
not usually supported by the C compiler. Instead, an enumeration type should be used to serialize
true/false values as xsd:boolean Schema type enumeration values. The xsd:boolean XML Schema
type is defined as:

enum xsd__boolean {false_, true_};
The value false_, for example, is encoded as:

<xsd:boolean xsi:type="xsd:boolean">false</xsd:boolean>

Peculiar of the SOAP boolean type encoding is that it only defines the values 0 and 1, while
the built-in XML Schema boolean type also defines the false and true symbolic constants as valid
values. The following example declaration of an enumeration type lacks named constants altogether
to force encoding of the enumeration values as literal constants:

144

enum SOAP_ENC_ _boolean {};

The value 0, for example, is encoded with an integer literal:

<SOAP-ENC:boolean xsi:type="SOAP-ENC:boolean">0<SOAP-ENC:boolean>

11.4.6 Bitmask Enumeration Serialization

A bitmask is an enumeration of flags such as declared with C#’s [Flags] enum annotation. gSOAP
supports bitmask encoding and decoding for interoperability. However, bitmask types are not
standardized with SOAP RPC.

A special syntactic convention is used in the header file input to the gSOAP soapcpp2 compiler to
indicate the use of bitmasks with an asterisk:

enum * name { enum-constant, enum-constant, ... };

The gSOAP soapcpp2 compiler will encode the enumeration constants as flags, i.e. as a series of
powers of 2 starting with 1. The enumeration constants can be or-ed to form a bitvector (bitmask)
which is encoded and decoded as a list of symbolic values in SOAP. For example:

enum * ns__machineStatus { ON, BELT, VALVE, HATCH};
int ns__getMachineStatus(char *name, char *enum ns__machineStatus result);

Note that the use of the enum does not require the asterisk, only the definition. The gSOAP
soapcpp2 compiler generates the enumeration:

enum ns__machineStatus { ON=1, BELT=2, VALVE=4, HATCH=8};

A service operation implementation in a Web service can return:

int ns__getMachineStatus(struct soap *soap, char *name, enum ns__machineStatus result)

*result = BELT — HATCH;
return SOAP_OK;

}

11.5 Struct Serialization

A struct data type is encoded as an XML Schema complexType (SOAP-encoded compound data
type) such that the struct name forms the data type’s element name and schema type and the fields
of the struct are the data type’s accessors. This encoding is identical to the class instance encoding
without inheritance and method declarations, see Section 11.6 for further details. However, the
encoding and decoding of structs is more efficient compared to class instances due to the lack of
inheritance and the requirement by the serialization routines to check inheritance properties at run
time.

145

Certain type of fields of a struct can be (de)serialized as XML attributes using the @ type qualifier.
See Section 11.6.7 for more details.

See Section 10.3 for more details on the struct/class member field serialization and the resulting
element and attribute qualified forms.

11.6 Class Instance Serialization

A class instance is serialized as an XML Schema complexType (SOAP-encoded compound data
type) such that the class name forms the data type’s element name and schema type and the data
member fields are the data type’s accessors. Only the data member fields are encoded in the SOAP
payload. Class methods are not encoded.

The general form of a class declaration is:
class [namespace,prefix,,]class,namel [:[public:] [private:} [protected:] [namespace,prefix, ,]class,name2]

[public:| [private:] [protected:]
field1;
field?2;

'[.ﬁublic:] [private:} [protected:]
methodl;
method?2;

where

namespace_prefix__ is the optional namespace prefix of the compound data type (see identifier trans-
lation rules 10.3)

class_namel is the element name of the compound data type (see identifier translation rules 10.3).

class_.name2 is an optional base class.

field is a field declaration (data member). A field MAY be declared static and const and MAY be
initialized.

method is a method declaration. A method MAY be declared virtual, but abstract methods are not
allowed. The method parameter declarations are REQUIRED to have parameter identifier
names.

[public:] [private:] [protected:] are OPTIONAL. Only members with public acces permission
can be serialized.

A class name is REQUIRED to be unique and cannot have the same name as a struct, enum, or
service operation name specified in the header file input to the gSOAP soapcpp2 compiler. The

146

reason is that service operation requests are encoded similarly to class instances in SOAP and they
are in principle undistinguishable (the method parameters are encoded just as the fields of a class).

Only single inheritance is supported by the gSOAP soapcpp2 compiler. Multiple inheritance is not
supported, because of the limitations of the SOAP protocol.

If a constructor method is present, there MUST also be a constructor declaration with empty
parameter list.

Classes should be declared “volatile” if you don’t want gSOAP to add serialization methods to
these classes, see Section 19.4 for more details.

Class templates are not supported by the gSOAP soapcpp2 compiler, but you can use STL containers,
see Section 11.11.8. You can also define your own containers similar to STL containers.

Certain type of fields of a struct can be (de)serialized as XML attributes using the @ type qualifier.
See Section 11.6.7 for more details.

See Section 10.3 for more details on the struct/class member field serialization and the resulting
element and attribute qualified forms.

Arrays may be embedded within a class (and struct) using a pointer field and size information, see
Section 11.11.7. This defines what is sometimes referred to in SOAP as “generics”.

Void pointers may be used in a class (or struct), but you have to add a type field so the gSOAP
runtime can determine the type of object pointed to, see Section 11.9.

A class instance is encoded as:

< [namespace—pref ix:] class-name xsi:type=" [namespace—pref ix: } class-name">

<basefield-namel xsi:type="...">...</basefield-namel>
<basefield-name2 xsi:type="...">...</basefield-name2>
<field-namel xsi:type="...">...</field-namel>
<field-name2 xsi:type="...">...</field-name2>

</ [name space-prefix:] class—-name>

where the field-name accessors have element-name representations of the class fields and the
basefield-name accessors have element-name representations of the base class fields. (The optional
parts resulting from the specification are shown enclosed in [|.)

The decoding of a class instance allows any ordering of the accessors in the SOAP payload. However,
if a base class field name is identical to a derived class field name because the field is overloaded,
the base class field name MUST precede the derived class field name in the SOAP payload for
decoding. gSOAP guarantees this, but interoperability with other SOAP implementations is cannot
be guaranteed.

11.6.1 Example

The following example declares a base class ns__Object and a derived class ns__Shape:

// Contents of file "shape.h":
class ns__Object

147

{

public:

char *name;
+

class ns__Shape : public ns__Object

{
public:
int sides;
enum ns__Color {Red, Green, Blue} color;
ns__Shape();
ns__Shape(int sides, enum ns__Green color);

“ns__Shape();
b

The implementation of the methods of class ns__Shape must not be part of the header file and need
to be defined elsewhere.

An instance of class ns__Shape with name Triangle, 3 sides, and color Green is encoded as:

<ns:Shape xsi:type="ns:Shape">

<name xsi:type="string">Triangle</name>
<sides xsi:type="int">3</sides>

<color xsi:type="ns:Color">Green</color>
</ns:shape>

The namespace URI of the namespace prefix ns must be defined by a namespace mapping table,
see Section 10.4.

11.6.2 Initialized static const Fields

A data member field of a class declared as static const is initialized with a constant value at compile
time. This field is encoded in the serialization process, but is not decoded in the deserialization
process. For example:

// Contents of file "triangle.h":
class ns__Triangle : public ns__Object
{

public:

int size;

static const int sides = 3;

b
An instance of class ns__Triangle is encoded in SOAP as:

<ns:Triangle xsi:type="ns:Triangle">
<name xsi:type="string">Triangle</name>
<size xsi:type="int">15</size>

<sides xsi:type="int">3>/sides>
</ns:Triangle>

148

Decoding will ignore the sides field’s value.

Caution: The current gSOAP implementation does not support encoding static const fields, due
to C++ compiler compatibility differences. This feature may be provided the future.

11.6.3 Class Methods

A class declaration in the header file input to the gSOAP soapcpp2 compiler MAY include method
declarations. The method implementations MUST NOT be part of the header file but are required
to be defined in another C++ source that is externally linked with the application. This convention
is also used for the constructors and destructors of the class.

Dynamic binding is supported, so a method MAY be declared virtual.

11.6.4 Getter and Setter Methods

Setter and getter methods are invoked at run time upon serialization and deserialization of class
instances, respectively. The use of setter and getter methods adds more flexibility to the serialization
and deserialization process.

A setter method is called in the serialization phase from the virtual soap_serialization method gener-
ated by the gSOAP soapcpp2 compiler. You can use setter methods to process a class instance just
before it is serialized. A setter method can be used to convert application data, such as translating
transient application data into serializable data, for example. You can also use setter methods to
retrieve dynamic content and use it to update a class instance right before serialization. Remember
setters as “set to serialize” operations.

Getter methods are invoked after deserialization of the instance. You can use them to adjust the
contents of class instances after all their members have been deserialized. Getters can be used
to convert deserialized members into transient members and even invoke methods to process the
deserialized data on the fly.

Getter and setter methods have the following signature:

int get(struct soap *soap) [const]|;
int set(struct soap *soap);

virtual
virtual

The active soap struct will be passed to the get and set methods. The methods should return
SOAP_OK when successful. A setter method should prepare the contents of the class instance for
serialization. A getter method should process the instance after deserialization.

Here is an example of a base64 binary class:

class xsd_ _base64Binary
{ public:
unsignedchar *_ _ptr;
int_ _size;
int get(struct soap *soap);
int set(struct soap *soap);

¥

149

Suppose that the type and options members of the attachment should be set when the class is about
to be serialized. This can be accomplished with the set method from the information provided by
the __ptr to the data and the soap struct passed to the set method (you can pass data via the
void*soap.user field).

The get method is invoked after the base64 data has been processed. You can use it for post-
processing purposes.

Here is another example. It defines a primitive update type. The class is a wrapper for the time_t
type, see Section 11.3.2. Therefore, elements of this type contain xsd:dateType data.

class update
{ public:
time_t __item;
int set(struct soap *soap);

+
The setter method assigns the current time:

int update::set(struct soap *soap)

{
this=>__item = time(NULL);
return SOAP_OK;

}

Therefore, serialization results in the inclusion of a time stamp in XML.

Caution: a get method is invoked only when the XML element with its data was completely parsed.
The method is not invoked when the element is an xsi:nil element or has an href attribute.

Caution: The soap_out method of a class calls the setter (when provided). However, the soap_out
method is declared const while the setter should be allowed to modify the contents of the class
instance. Therefore, the gSOAP-generated code recasts the instance and the const is removed
when invoking the setter.

11.6.5 Streaming XML with Getter and Setter Methods

Getter methods enable streaming XML operations. A getter method is invoked when the object
is deserialized and the rest of the SOAP /XML message has not been processed yet. For example,
you can add a getter method to the SOAP Header class to implement header processing logic that
is activated as soon as the SOAP Header is received. An example code is shown below:

class h__Authentication
{ public:
char *id;
int get(struct soap *soap);

class SOAP_ENV_ _Header
{ public:
h__Authentication *h__authentication;

¥

150

The Authentication SOAP Header field is instantiated and decoded. After decoding, the getter
method is invoked, which can be used to check the id before the rest of the SOAP message is
processed.

11.6.6 Polymorphism, Derived Classes, and Dynamic Binding

Interoperability between client and service applications developed with gSOAP is established even
when clients and/or services use derived classes instead of the base classes used in the declaration
of the service operation parameters. A client application MAY use pointers to instances of derived
classes for the input parameters of a service operation. If the service was compiled with a declaration
and implementation of the derived class, the service operation base class input parameters are
demarshalled and a derived class instance is created instead of a base class instance. If the service
did not include a declaration of the derived class, the derived class fields are ignored and a base
class instance is created. Therefore, interoperability is guaranteed even when the client sends an
instance of a derived classes and when a service returns an instance of a derived class.

The following example declares Base and Derived classes and a service operation that takes a
pointer to a Base class instance and returns a Base class instance:

// Contents of file " derived.h”
class Base

{
public:

char *name;
Base();
virtual void print();

+

class Derived : public Base

{
public:
int num;
Derived();
virtual void print();

¥

int method(Base *in, struct methodResponse { Base *out; } &result);

This header file specification is processed by the gSOAP soapcpp2 compiler to produce the stub
and skeleton routines which are used to implement a client and service. The pointer of the service
operation is also allowed to point to Derived class instances and these instances will be marshalled
as Derived class instances and send to a service, which is in accord to the usual semantics of
parameter passing in C++ with dynamic binding.

The Base and Derived class method implementations are:

// Method implementations of the Base and Derived classes:
#include "soapH.h"

é.ase::Base()
{

151

cout << "created a Base class instance” << endl;

}
Derived::Derived()

{

cout << "created a Derived class instance” << endl;
éase::print()
{ cout << "print(): Base class instance " << name << endl;
}Derived::print()
{

cout << "print(): Derived class instance " << name << " " << num << endl;

}

Below is an example CLIENT application that creates a Derived class instance that is passed as the
input parameter of the service operation:

// CLIENT

#include "soapH.h"

int main()

{
struct soap soap;
soap-init(&soap);
Derived objl;
Base *obj2;
struct methodResponse r;
objl.name = "X";
objl.num = 3;
soap_call_method(&soap, url, action, &objl, r);
r.obj2->print();

The following example SERVER1 application copies a class instance (Base or Derived class) from
the input to the output parameter:

// SERVER1
#include "soapH.h"
int main()

{

soap_serve(soap_new());

}

int method(struct soap *soap, Base *objl, struct methodResponse &result)

{
obj1->print();
result.obj2 = objl;
return SOAP_OK;

}

152

The following messages are produced by the CLIENT and SERVER1 applications:

CLIENT: created a Derived class instance
SERVERI: created a Derived class instance
SERVERI: print(): Derived class instance X 3
CLIENT: created a Derived class instance
CLIENT: print(): Derived class instance X 3

Which indicates that the derived class kept its identity when it passed through SERVER1. Note
that instances are created both by the CLIENT and SERVER1 by the demarshalling process.

Now suppose a service application is developed that only accepts Base class instances. The header
file is:

// Contents of file "base.h":
class Base

{
public:
char *name;
Base();
virtual void print();

h

int method(Base *in, Base *out);

This header file specification is processed by the gSOAP soapcpp2 tool to produce skeleton routine
which is used to implement a service (so the client will still use the derived classes).

The method implementation of the Base class are:

// Method implementations of the Base class:
#tinclude "soapH.h"

Base::Base()

cout << "created a Base class instance” << endl;
Base::print()
cout << "print(): Base class instance " << name << endl;

And the SERVER?2 application is that uses the Base class is:

// SERVER2
#include "soapH.h"
int main()

{

soap_serve(soap_new());

}

int method(struct soap *soap, Base *objl, struct methodResponse &result)

153

{
obj1->print();
result.obj2 = objl;
return SOAP_OK;

}

Here are the messages produced by the CLIENT and SERVER2 applications:

CLIENT: created a Derived class instance
SERVER2: created a Base class instance
SERVER2: print(): Base class instance X
CLIENT: created a Base class instance
CLIENT: print(): Base class instance X

In this example, the object was passed as a Derived class instance to SERVER2. Since SERVER2
only implements the Base class, this object is converted to a Base class instance and send back to
CLIENT.

11.6.7 XML Attributes

The SOAP RPC/LIT and SOAP DOC/LIT encoding styles support XML attributes in SOAP
messages while SOAP RPC with “Section 5” encoding does not support XML attributes other
than the SOAP and XSD specific attributes. SOAP RPC “Section 5” encoding has advantages for
cross-language interoperability and data encodings such as graph serialization. However, RPC/LIT
and DOC/LIT enables direct exchange of XML documents, which may include encoded application
data structures. Language interoperability is compromised, because no mapping between XML and
the typical language data types is defined. The meaning of the RPC/LIT and DOC/LIT XML
content is Schema driven rather than application/language driven.

gSOAP supports XML attribute (de)serialization of members in structs and classes. Attributes
are primitive XSD types, such as strings, enumerations, boolean, and numeric types. To declare
an XML attribute in a struct/class, the qualifier @ is used with the type of the attribute. The
type must be primitive type (including enumerations and strings), which can be declared with or
without a typedef to associate a XSD type with the C/C+ type. For example

typedef char *xsd_ _string;

typedef bool *xsd__boolean;

enum ns__state { .0, _1, 2 };

struct ns__myStruct

{
@ xsd__string ns__type; // encode as XML attribute 'ns:type’ of type 'xsd:string'
@ xsd__boolean ns__flag = false; // encode as XML attribute 'ns:flag’ of type 'xsd:boolean’
@ enum ns__state ns__state = _2; // encode as XML attribute 'ns:state’ of type 'ns:state’
struct ns__myStruct *next;

h

The @ qualifier indicates XML attribute encoding for the ns__type, ns_ _flag, and ns__state fields. Note
that the namespace prefix ns is used to distinguish these attributes from any other attributes such
as xsi:type (ns:type is not to be confused with xsi:type).

154

Default values can be associated with any field that has a primitive type in a struct/class, as is
illustrated in this example. The default values are used when the receiving message does not contain
the corresponding values.

String attributes are optional. Other type of attributes should be declared as pointers to make
them optional:

struct ns__myStruct

Qint *a; // omitted when NULL

I

Because a service operation request and response is essentially a struct, XML attributes can also
be associated with method requests and responses. For example

int ns__myMethod(@char *ns_ _name, ...);

Attributes can also be attached to the dynamic arrays, binary types, and wrapper classes/structs
of primitive types. Wrapper classes are described in Section 11.3.2. For example

struct xsd_ _string

char *__item;
© xsd_ _boolean flag;

b
and

struct xsd_ _base64Binary

{

unsigned char *_ _ptr;
int __size;
@ xsd__boolean flag;

I

The attribute declarations MUST follow the __item, __ptr, and __size fields which define the charac-
teristics of wrapper structs/classes and dynamic arrays.

Caution: Do not use XML attributes with SOAP RPC encoding. You can only use attributes
with RPC literal encoding.

11.6.8 QName Attributes and Elements

gSOAP ensures the proper decoding of XSD QNames. An element or attribute with type QName
(Qualified Name) contains a namespace prefix and a local name. You can declare a QName type
as a typedef char *xsd__QName. Values of type QName are internally handled as regular strings.
gSOAP takes care of the proper namespace prefix mappings when deserializing QName values. For
example

155

typedef char *xsd__QName;
struct ns__myStruct

xsd__QName elt = "ns:xyz"; // QName element with default value " ns:xyz"
@ xsd__QName att = "ns:abc”; // QName attribute with default value "ns:abc”

I

When the elt and att fields are serialized, their string contents are just transmitted (which means
that the application is responsible to ensure proper formatting of the QName strings prior to
transmission). When the fields are deserialized however, gSOAP takes care mapping the qualifiers
to the appropriate namespace prefixes. Suppose that the inbound value for the elt is x:def, where
the namespace name associated with the prefix x matches the namespace name of the prefix ns (as
defined in the namespace mapping table). Then, the value is automatically converted into ns:def.
If the namespace name is not in the table, then x:def is converted to "URI":def where "URI" is the
namespace URI bound to x in the message received. This enables an application to retrieve the
namespace information, whether it is in the namespace mapping table or not.

Note: QName is a pre-defined typedef type and used by gSOAP to (de)serialize SOAP Fault codes
which are QName elements.

11.7 Union Serialization

A union is only serialized if the union is used within a struct or class declaration that includes a int
__union field that acts as a discriminant or selector for the union fields. The selector stores run-time
usage information about the union fields. That is, the selector is used to enumerate the union fields
such that the gSOAP engine is able to select the correct union field to serialize.

A union within a struct or class with a selector field represents xs:choice within a Schema com-
plexType component. For example:

struct ns__PO
{
struct ns__Invoice

(o

union ns__PO_or_lnvoice

{

struct ns__PO po;
struct ns__lnvoice invoice;
struct ns__composite

{

char *name;
int __union;
union ns_ _PO_or_Invoice value;

The union ns__PO_or_Invoice is expanded as a xs:choice:

<complexType name="composite">
<sequence>

156

<element name="name" type="xsd:string"/>
<choice>
<element name="po" type="ns:P0"/>
<element name="invoice" type="ns:Invoice"/>
</choice>
</sequence>
</complexType>

Therefore, the name of the union and field can be freely chosen. However, the union name should be
qualified (as shown in the example) to ensure instances of XML Schemas with elementFormDefault="qualified"
are correctly serialized (po and invoice are ns: qualified).

The int __union field selector’s values are determined by the soapcpp2 compiler. Each union field
name has a selector value formed by:

SOAP_UNION_union-name_field-name

These selector values enumerate the union fields starting with 1. The value 0 (or any negative value)
can be assigned to omit the serialization of the union, but only if explicitly allowed by validation
rules, which requires minOccurs="0" for the xs:choice as follows:

struct ns__composite

char *name;
int __union 0; // <choice minOccurs="0">
union ns__PO_or_Invoice value;

¥

This way we can treat the union as an optional data item by setting _ _union=0.

Since 2.7.16 it is also possible to use a ’$’ as a special marker to annotate a selector field that must
be of type int and the field name is no longer relevant:

struct ns_ _composite

{

char *name;
$int select 0; // <choice minOccurs="0">
union ns_ _PO_or_Invoice value;

¥

The following example shows how the struct ns__composite instance is initialized for serialization
using the above declaration:

struct ns__composite data;

data.name =" ...";
data.select = SOAP_UNION_ns__PO_or_Invoice_po; // select PO
data.value.po.number = ...; // populate the PO

Note that failing to set the selector to a valid union field can lead to a crash of the gSOAP serializer
because it will attempt to serialize an invalid union field.

157

For deserialization of union types, the selector will be set to one of the union field selector values,
as determined by the XML payload. The selector will be set to 0 or -1 when no union member
was deserialized, where a negative value indicates that a member was required by validation rules.
Strict validation enabled with SOAP_XML_STRICT results in a validation fault.

When more than one union is used in a struct or class, the __union selectors must be renamed to
avoid name clashes by using suffixes as in:

struct ns__composite

{

char *name;

$int sel_value; // = SOAP_UNION_ns__PO _or_Invoice_[po—invoice]
union ns__PO_or_Invoice value;

$int sel_data; // = SOAP_UNIO_ns__Email_or_Fax_[email—fax]
union ns__Email_or_Fax data;

¥

11.8 Serializing Pointer Types

The serialization of a pointer to a data type amounts to the serialization of the data type in SOAP
and the SOAP encoded representation of a pointer to the data type is indistinguishable from the
encoded representation of the data type pointed to.

11.8.1 Multi-Referenced Data

A data structure pointed to by more than one pointer is serialized as SOAP multi-reference data.
This means that the data will be serialized only once and identified with a unique id attribute.
The encoding of the pointers to the shared data is done through the use of href or ref attributes to
refer to the multi-reference data. See Section 9.12 on options to control the serialization of multi-
reference data. To turn multi-ref off, use SOAP_XML_TREE to process plain tree-based XML. To
completely eliminate multi-ref (de)serialization use the WITH_NOIDREF compile-time flag with all
source code (including stdsoap2.c and stdsoap2.cpp) to permanently disable id-href processing. Cyclic
C/C++ data structures are encoded with multi-reference SOAP encoding. Consider for example
the following a linked list data structure:

typedef char *xsd_ _string;
struct ns__list

{

xsd_ _string value;
struct ns__list *next;

¥

Suppose a cyclic linked list is created. The first node contains the value ”"abc” and points to a node
with value ”def” which in turn points to the first node. This is encoded as:

<ns:list id="1" xsi:type="ns:list">

<value xsi:type="xsd:string">abc</value>
<next xsi:type="ns:list">

158

<value xsi:type="xsd:string">def</value>
<next href="#1"/>
</next>
</ns:list>

In case multi-referenced data is received that “does not fit in a pointer-based structure”, the data is
copied. For example, the following two structs are similar, except that the first uses pointer-based
fields while the other uses non-pointer-based fields:

typedef long xsd__int;
struct ns_ _record

{
xsd__int *a;
xsd__int *b;
HP
struct ns_ _record
{
xsd__int a;
xsd__int b;
IR
P.a = &n;
Pb = &n;

Since both a and b fields of P point to the same integer, the encoding of P is multi-reference:

<ns:record xsi:type="ns:record">

<b href="#1"/>
</ns:record>
<id id="1" xsi:type="xsd:int">123</id>

Now, the decoding of the content in the R data structure that does not use pointers to integers
results in a copy of each multi-reference integer. Note that the two structs resemble the same XML
data type because the trailing underscore will be ignored in XML encoding and decoding.

11.8.2 NULL Pointers and Nil Elements

A NULL pointer is not serialized, unless the pointer itself is pointed to by another pointer (but see
Section 9.12 to control the serialization of NULLs). For example:

struct X

{
int *p;
int **q;

}

Suppose pointer q points to pointer p and suppose p=NULL. In that case the p pointer is serialized
as

159

<... 1d="123" xsi:nil="true"/>

and the serialization of q refers to href="#123". Note that SOAP 1.1 does not support pointer to
pointer types (!), so this encoding is specific to gSOAP. The pointer to pointer encoding is rarely
used in codes anyway. More common is a pointer to a data type such as a struct with pointer fields.

Caution: When the deserializer encounters an XML element that has a xsi:nil="true" attribute
but the corresponding C+-+ data is not a pointer or reference, the deserializer will terminate with a
SOAP_NULL fault when the SOAP_XML_STRICT flag is set. The types section of a WSDL description
contains information on the “nilability” of data.

11.9 Void Pointers

In general, void pointers (void*) cannot be (de)serialized because the type of data referred to is
untyped. To enable the (de)serialization of the void pointers that are members of structs or classes,
you can insert a int __type field right before the void pointer field. The int __type field contains run
time information on the type of the data pointed to by void* member in a struct/class to enable
the (de)serialization of this data. The int _ _type field is set to a SOAP_TYPE_X value, where X is the
name of a type. gSOAP generates the SOAP_TYPE_X definitions in soapH.h and uses them internally
to uniquely identify the type of each object. The type naming conventions outlined in Section 7.5.3
are used to determine the type name for X.

Here is an example to illustrate the (de)serialization of a veid* field in a struct:

struct myStruct

{
int __type; // the SOAP_TYPE pointed to by p

void *p;
b
The __type integer can be set to 0 at run time to omit the serialization of the void pointer field.
The following example illustrates the initialization of myStruct with a void pointer to an int:
struct myStruct S;
int n;

S.p = &n;
S.__type = SOAP_TYPE.int;

The serialized output of S contains the integer.

The deserializer for myStruct will automatically set the _ _type field and void pointer to the deserialized
data, provided that the XML content for p carries the xsi:type attribute from which gSOAP can
determine the type.

Important: when (de)serializing strings via a void* field, the void* pointer MUST directly point
to the string value rather than indirectly as with all other types. For example:

struct myStruct S;
S.p = (void*)" Hello";

160

S.__type = SOAP_TYPE_ string;

This is the case for all string-based types, including types defined with typedef char*.

You may use an arbitrary suffix with the _ _type fields to handle multiple void pointers in structs/classes.
For example

struct myStruct

{
int __typeOfp; // the SOAP_TYPE pointed to by p

void *p;
int __typeOfq; // the SOAP_TYPE pointed to by q
void *q;

+

Because service method parameters are stored within structs, you can use __type and void* parame-
ters to pass polymorphic arguments without having to define a C++ class hierarchy (Section 11.6.6).
For example:

typedef char *xsd_ _string;

typedef int xsd__int;

typedef float xsd_ _float;

enum ns__status { on, off };

struct ns__widget { xsd__string name; xsd__int part; }; int ns__myMethod(int __type, void *data,
struct ns__myMethodResponse { int __type; void *return_; } *out);

This method has a polymorphic input parameter data and a polymorphic output parameter return_.
The _ _type parameters can be one of SOAP_TYPE xsd_ _string, SOAP_TYPE _xsd__int, SOAP_TYPE _xsd_ _float,
SOAP_TYPE _ns_ _status, or SOAP_TYPE_ns__widget. The WSDL produced by the gSOAP soapcpp2 com-
piler declares the polymorphic parameters of type xsd:anyType which is ”too loose” and doesn’t
allow the gSOAP importer to handle the WSDL accurately. Future gSOAP releases might replace
xsd:anyType with a choice schema type that limits the choice of types to the types declared in the
header file.

11.10 Fixed-Size Arrays

Fixed size arrays are encoded as per SOAP 1.1 one-dimensional array types. Multi-dimensional
fixed size arrays are encoded by gSOAP as nested one-dimensional arrays in SOAP. Encoding of
fixed size arrays supports partially transmitted and sparse array SOAP formats.

The decoding of (multi-dimensional) fixed-size arrays supports the SOAP multi-dimensional array
format as well as partially transmitted and sparse array formats.

An example:

// Contents of header file "fixed.h":
struct Example

float a[2](3];

1

161

This specifies a fixed-size array part of the struct Example. The encoding of array a is:

<a xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="float[][2]">
<SOAP-ENC:Array xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="float[3]"
<float xsi:type="float">...</float>

<float xsi:type="float">...</float>

<float xsi:type="float">...</float>

</SOAP-ENC:Array>

<SOAP-ENC:Array xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="float[3]"
<float xsi:type="float">...</float>

<float xsi:type="float">...</float>

<float xsi:type="float">...</float>

</SOAP-ENC:Array>

Caution: Any decoded parts of a (multi-dimensional) array that do not “fit” in the fixed size array
are ignored by the deserializer.

11.11 Dynamic Arrays

As the name suggests, dynamic arrays are much more flexible than fixed-size arrays and dynamic
arrays are better adaptable to the SOAP encoding and decoding rules for arrays. In addition,
a typical C application allocates a dynamic array using malloc, assigns the location to a pointer
variable, and deallocates the array later with free. A typical C++ application allocates a dynamic
array using new, assigns the location to a pointer variable, and deallocates the array later with
delete. Such dynamic allocations are flexible, but pose a problem for the serialization of data: how
does the array serializer know the length of the array to be serialized given only a pointer to the
sequence of elements? The application stores the size information somewhere. This information
is crucial for the array serializer and has to be made explicitly known to the array serializer by
packaging the pointer and array size information within a struct or class.

11.11.1 SOAP Array Bounds Limits

SOAP encoded arrays use the SOAP-ENC: Array type and the SOAP-ENC:arrayType attribute to define
the array dimensionality and size. As a security measure to avoid denial of service attacks based on
sending a huge array size value requiring the allocation of large chunks of memory, the total number
of array elements set by the SOAP-ENC:arrayType attribute cannot exceed SOAP_MAXARRAYSIZE,
which is set to 100,000 by default. This constant is defined in stdsoap2.h. This constant only
affects multi-dimensional arrays and the dimensionality of the receiving array will be lost when the
number of elements exceeds 100,000. One-dimensional arrays will be populated in sequential order
as expected.

11.11.2 One-Dimensional Dynamic SOAP Arrays
A special form of struct or class is used to define one-dimensional dynamic SOAP-encoded arrays.

Each array has a pointer variable and a field that records the number of elements the pointer points
to in memory.

162

The general form of the struct declaration that contains a one-dimensional dynamic SOAP-encoded
array is:

struct some_name

{

Type *__ptr; // pointer to array of elements in memory

int __size; // number of elements pointed to

[[static const] int _ _offset [= ...|;] // optional SOAP 1.1 array offset
... // anything that follows here will be ignored

h

where Type MUST be a type associated with an XML Schema or MUST be a primitive type. If
these conditions are not met, a vector-like XML (de)serialization is used (see Section 11.11.7). A
primitive type can be used with or without a typedef. If the array elements are structs or classes,
then the struct/class type names should have a namespace prefix for schema association, or they
should be other (nested) dynamic arrays.

An alternative to a struct is to use a class with optional methods that MUST appear after the __ptr
and _ size fields:

class some_name

{

public:

Type *__ptr;

W,size;

[[static const] int __offset [= ...[;]
method1;

method?2;

... // any fields that follow will be ignored

h

To encode the data type as an array, the name of the struct or class SHOULD NOT have a namespace
prefix, otherwise the data type will be encoded and decoded as a generic vector, see Section 11.11.7.

The deserializer of a dynamic array can decode partially transmitted and/or SOAP sparse arrays,
and even multi-dimensional arrays which will be collapsed into a one-dimensional array with row-
major ordering.

Caution: SOAP 1.2 does not support partially transmitted arrays. So the _ _offset field of a dynamic
array is ignored.

11.11.3 Example

The following example header file specifies the XMethods Service Listing service getAlISOAPServices
service operation and an array of SOAPService data structures:

// Contents of file "listing.h":
class ns3__SOAPService

{

public:

163

int ID;
char *name;
char *owner:;
char *description;
char *homepageURL;
char *endpoint;
char *SOAPAction;
char *methodNamespaceURI;
char *serviceStatus;
char *methodName;
char *dateCreated;
char *downloadURL;
char *wsdIURL;
char *instructions;
char *contactEmail;
char *serverImplementation;
b
class ServiceArray
{
public:
ns3__SOAPService *_ _ptr; // points to array elements
int __size; // number of elements pointed to
ServiceArray();
“ServiceArray();
void print();
b

int ns__getAlISOAPServices(ServiceArray &return_);

An example client application:

#include "soapH.h" ...
// ServiceArray class method implementations:
ServiceArray::ServiceArray()
{
__ptr = NULL;
__size = 0;
}
ServiceArray::”ServiceArray()
{ // destruction handled by gSOAP
}

void ServiceArray::print()

{
for (int i =0; i __size; i++)
cout << __ptr[i].name << ": " << __ptr[i].homepage << endl;
}

// Request a service listing and display results:

{

struct soap soap;
ServiceArray result;
const char *endpoint = " www.xmethods.net:80/soap/servlet/rpcrouter”;

164

const char *action = "urn:xmethodsServicesManager#getAlISOAPServices”;

soap-init(&soap);
soap-_call_ns__getAlISOAPServices(&soap, endpoint, action, result);
result.print();

soap_destroy(&soap); // dealloc class instances
soap_end(&soap); // dealloc deserialized data
soap_done(&soap); // cleanup and detach soap struct

11.11.4 One-Dimensional Dynamic SOAP Arrays With Non-Zero Offset

The declaration of a dynamic array as described in 11.11 MAY include an int __offset field. When
set to an integer value, the serializer of the dynamic array will use this field as the start index of
the array and the SOAP array offset attribute will be used in the SOAP payload. Note that array
offsets is a SOAP 1.1 specific feature which is not supported in SOAP 1.2.

For example, the following header file declares a mathematical Vector class, which is a dynamic
array of floating point values with an index that starts at 1:

// Contents of file "vector.h”:
typedef float xsd_ float;
class Vector
{

xsd__float *_ _ptr;

int _ _size;

int _ _offset;

Vector();

Vector(int n);

float& operator[](int i);

}

The implementations of the Vector methods are:

Vector::Vector()

{
__ptr = NULL;
__size = 0;
__offset = 1;

}

Vector::Vector(int n)

{
__ptr = (float*)malloc(n*sizeof(float));
__size = n;
__offset = 1;

}

Vector::"Vector()

{
if (__ptr)

165

free(_ _ptr);

}
float& Vector::operator(|(int i)
{
return __ptr[i-_ _offset];
}

An example program fragment that serializes a vector of 3 elements:

struct soap soap;
soap-init(&soap);
Vector v(3);

v[1] = 1.0;
v[2] = 2.0;
v[3] = 3.0;

soap-begin(&soap);
v.serialize(&soap);
v.put("vec");
soap-_end(&soap);

The output is a partially transmitted array:

<vec xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:float[4]" SOAP-ENC:offset="[1]">
<item xsi:type="xsd:float">1.0</item>

<item xsi:type="xsd:float">2.0</item>

<item xsi:type="xsd:float">3.0</item>

</vec>

Note that the size of the encoded array is necessarily set to 4 and that the encoding omits the
non-existent element at index 0.

The decoding of a dynamic array with an __offset field is more efficient than decoding a dy-
namic array without an _ _offset field, because the __offset field will be assigned the value of the
SOAP-ENC:offset attribute instead of padding the initial part of the array with default values.

11.11.5 Nested One-Dimensional Dynamic SOAP Arrays

One-dimensional dynamic arrays MAY be nested. For example, using class Vector declared in the
previous section, class Matrix is declared:

// Contents of file "matrix.h":
class Matrix
{
public:
Vector *__ptr;
int __size;
int _ _offset;
Matrix();
Matrix(int n, int m);
“Matrix();

166

Vector& operator[|(int i);

¥

The Matrix type is essentially an array of pointers to arrays which make up the rows of a matrix.
The encoding of the two-dimensional dynamic array in SOAP will be in nested form.

11.11.6 Multi-Dimensional Dynamic SOAP Arrays
The general form of the struct declaration for K-dimensional (K > 1) dynamic arrays is:

struct some_name
{
Type *_ _ptr;
int _ _size[K];
int _ _offset[K];
... // anything that follows here will be ignored

+

where Type MUST be a type associated with an XML Schema, which means that it must be a
typedefed type in case of a primitive type, or a struct/class name with a namespace prefix for
schema association, or another dynamic array. If these conditions are not met, a generic vector
XML (de)serialization is used (see Section 11.11.7).

An alternative is to use a class with optional methods:

class some_name
{
public:
Type *__ptr;
int _ _size[K];
int __offset[K];
method1;
method?2;
... // any fields that follow will be ignored

1

In the above, K is a constant denoting the number of dimensions of the multi-dimensional array.

To encode the data type as an array, the name of the struct or class SHOULD NOT have a namespace
prefix, otherwise the data type will be encoded and decoded as a generic vector, see Section 11.11.7.

The deserializer of a dynamic array can decode partially transmitted multi-dimensional arrays.

For example, the following declaration specifies a matrix class:

typedef double xsd__double;
class Matrix
{

public:

xsd__double *__ptr;

int _ _size[2];

167

int _ offset[2];

¥

In contrast to the matrix class of Section 11.11.5 that defined a matrix as an array of pointers
to matrix rows, this class has one pointer to a matrix stored in row-major order. The size of the
matrix is determined by the __size field: __size[0] holds the number of rows and _ _size[1] holds the
number of columns of the matrix. Likewise, _ _offset[0] is the row offset and _ _offset[1] is the columns
offset.

11.11.7 Encoding XML Generics Containing Dynamic Arrays

The XML “generics” concept discussed in the SOAP enco