FontAnvil 0.2

Visit the FontAnvil home page at http://tsukurimashou.osdn. jp/fontanvil.php

FontAnvil user manual
Copyright (© 2014, 2015 Matthew Skala

This document is free: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this docu-
ment. If not, see http://www.gnu.org/licenses/.

The above license for the document itself notwithstanding, the Font Anvil software described
in this document comprises the work of many different copyright holders who have licensed
their contributions under a variety of terms. The package as a whole is GPL, but some
portions of it are also available under less restrictive licenses. See the “Licensing” chapter
of this document for more information.

Anvil clip-art by “Gerald_G,” public domain.

http://tsukurimashou.osdn.jp/fontanvil.php
http://www.gnu.org/licenses/

Contents

1 Introduction

2 Building Font Anvil

2.1 Dependencies e e
2.2 From a version control checkout
2.3 From a distribution packageo oL L0
2.4 FontAnvil and Tsukurimashou

3 Running FontAnvil

3.1 Command-line options L
3.2 Shebang L e
3.3 Interactive mode and readlineo

4 Data model

4.1 Fonts in MemMOry Lo e e e e e e e
4.2 Glyphsandslots
4.3 Encodings
4.4 The .notdef glyph
4.5 Theclipboard
4.6 Look-up tables

5 Language reference

5.1 Basic syntax

5.2 Data types, variables, and scope L.
5.3 Operators
5.4 Control structures
5.5 Most of the built-in functions oL
5.6 Built-in functions in FontAnvil and not in FontForge
5.7 Built-in functions in FontForge and not in FontAnvil

5.8 Other notes

6 Licensing

00 00~~~

©

10
11

12
12
13
15
17
17
17

18
18
19
20
20
20
21
21
22

23

Chapter 1

Introduction

FontAnvil is a script language interpreter for manipulating fonts. FontAnvil is substantially
compatible with the PfaEdit/FontForge native scripting language, but Font Anvil is intended
for non-interactive use; for instance, invocation from the build systems of font packages like
Tsukurimashou. To better serve font package build systems in general and Tsukurimashou
in particular, FontAnvil has no GUI and, to a reasonable extent, avoids dependencies on
external packages.

There was a program called PfaEdit for editing fonts in Postscript ASCII format (.pfa
files). PfaEdit development continued for many years, it changed its name to FontForge,
and it became the de facto standard font editing program in the free software community.
FontForge is still under active development to this day. The main focus of FontForge is
on interactive editing by GUI users, and the proportion of its code and development effort
dedicated to such users is large and growing.

PfaEdit had a scripting language, which as far as I know never had an official name.
I will call it “PE script” in the interests of neutrality; the traditional filename extension
for files in this language is .pe. Development of PE script continued into the FontForge
era. Many free font packages use PE scripts executed by FontForge to process font files
non-interactively in the context of a build system. I myself maintain the Tsukurimashou
Project (http://tsukurimashou.osdn.jp/), which processes fonts using PE scripts on a
massive scale (thousands of script invocations per build).

Attempting to use a large and steadily-growing GUI program as a non-interactive script
language interpreter is not always convenient. The many external libraries needed to build
FontForge implicitly become dependencies of any font package that needs FontForge for its
build system; and it is not easy to get users to install them all correctly just to build a
font package. It is also hard to predict whether a given version of FontForge will actually
work for a given script: with GUI enhancements, and even social network features, as the
strategic priorities for FontForge development, it is frequently the case that the stable and
correct execution of scripts is not at the top of the priority list, and bugs in script processing
are fixed late if at all.

There was a recent proposal to remove PE script from FontForge entirely, which if
adopted would be fatal to systems that depend on it, and not at all adequately addressed by
the concommitant proposal to encourage current PE script users to “upgrade” to Python.
That particular proposal was not immediately implemented, but it seems clear that the
writing is on the wall for continued FontForge support of PE script. The mere risk of pos-
sibly losing PE scripting in up-to-date versions of widely-used Linux distributions at some

http://tsukurimashou.osdn.jp/

CHAPTER 1. INTRODUCTION)

unspecified point in the future is a big problem for the Tsukurimashou Project. FontForge
for all its good points can no longer be thought of as a stable platform for non-interactive
font manipulation; its priorities are other things entirely. But my own project absolutely
requires a stable platform for non-interactive font manipulation. FontAnvil is intended to
fill the gap.

FontAnvil’s development is driven by the needs of the Tsukurimashou Project, but my
hope is that it will also be useful to the many other projects currently using PE scripts for
non-interactive font processing. I am also a member of the FontForge development team,
and I hope that FontAnvil’s existence will reduce the pressure on the FontForge team to
continue development of code that is outside most of the team’s interests and expertise.
Splitting the PE script interpreter into a standalone package should be beneficial to almost
everyone involved.

Some plans and goals for FontAnvil are:

e Whatever Tsukurimashou needs from a font manipulation script interpreter.

Return statements indented to the same level as the surrounding code.

e A “remove overlaps” command that works.

No GUI, Python, or exotic dependencies.

No recursive Autotools.

Correct memory management.

Simple directory and linking structure (in particular, no unnecessary shared libraries).
e Main code repository in Subversion.

FontAnvil’s departure point from FontForge was at this tagged revision on Github:
https://github.com/mskala/fontforge/releases/tag/fontanvil. That is not a main-
line FontForge revision; it was synthesized by merging the mainline master as of roughly
February 5, 2014 with a few patches from other branches that were current as of the be-
ginning of March. From there I copied the code into a private Subversion server (private
because I don’t want to publish some intermediate revisions that lack proper copyright no-
tices) and ripped out most of the code that was not required by FontAnvil, that being the
majority of the package. I simplified the structure of the package and the build system along
the way. Removing the last traces of dead code will be a long-term project. The first public
revision of FontAnvil was added as a subdirectory to the Tsukurimashou Project’s Subver-
sion server on March 4, 2014. Future releases will be available through Tsukurimashou’s
Web site.

Since FontAnvil and FontForge are free software under compatible license terms and
share many potential users and one developer, there is some possibility for cross-pollination
and sharing of code and ideas between the two. However, I do not think it is likely that I
will spend much time trying to import future development from FontForge into FontAnvil,
nor that the FontForge team will spend much time trying to import future development
from FontAnvil into FontForge. Not much future development on either project will be
particularly relevant to the other. The two projects have different goals and policies and
are likely to diverge. However, since PE script is mature and neither side is likely to

https://github.com/mskala/fontforge/releases/tag/fontanvil

CHAPTER 1. INTRODUCTION 6

drastically change the language, I think it is likely that for the most part FontAnvil and
FontForge will be able to run each other’s scripts for as long as FontForge chooses to include

a PE script interpreter.
Of all the parts of a forge, an anvil is simple, an anvil is trustworthy, and most of all,

an anvil is stable.

Matthew Skala
mskala@ansuz.sooke.bc.ca
http://ansuz.sooke.bc.ca/

http://ansuz.sooke.bc.ca/

Chapter 2

Building Font Anvil

There are no immediate plans to build binary distribution packages; to use this code you
will have to build it yourself from sources.

2.1 Dependencies

Building FontAnvil requires several libraries and other resources. FIXME they should be
listed here.
Building from a version control checkout also requires recent Autotools.

2.2 From a version control checkout

FontAnvil is available by anonymous Subversion checkout from http://svn.osdn. jp/svnroot/
tsukurimashou/trunk/fontanvil/. That is the main public repository for FontAnvil
source code, and checking out from there is (at least for the moment, while the code is

in flux) the preferred way to obtain FontAnvil. The Tsukurimashou repository as a whole

is also mirrored on Github at https://github.com/mskala/Tsukurimashou.git, but Git
unfortunately does not offer any easy way to clone only the FontAnvil portion of the repos-
itory.

The version control system does not track files that would be included in a distribution
tarball but can be built automatically from source files already under version control, and
“configure” is one such, so it is necessary to create it before building. This will require
having recent GNU Autotools on your system.

autoreconf
automake --add-missing
autoreconf

All three steps are necessary: the first autoreconf will fail, but creates files needed by
automake, which in turn creates files needed for autoreconf to finish its work. All these
commands will probably give a lot of error and warning messages. Then you can build and
install in the usual way:

./configure
make

http://svn.osdn.jp/svnroot/tsukurimashou/trunk/fontanvil/
http://svn.osdn.jp/svnroot/tsukurimashou/trunk/fontanvil/
https://github.com/mskala/Tsukurimashou.git

CHAPTER 2. BUILDING FONTANVIL 8

as root:
make install

The configure script supports ——help and most of the usual options. Note that FontAnvil’s
configure is a work in progress and may not correctly detect or handle some libraries that
it should. Also still to do is a nice display at the end of the configure run showing what
libraries were and were not found.

The build system should automatically detect and use multiple cores on a computer
that has them.

2.3 From a distribution package

Distribution packages are available from the Font Anvil home page at http://tsukurimashou.
osdn. jp/fontanvil.php.

Building from one is much the same as building from a version control checkout, minus
the need to build configure. Unpack the tarball file and do the usual Autotools build:

./configure
make

as root:
make install

2.4 FontAnvil and Tsukurimashou

Font Anvil’s reason for existence is to support Tsukurimashou, and its source control reposi-
tory is a subdirectory of the Tsukurimashou source control repository, but Font Anvil is not
a “parasite” of Tsukurimashou in the technical sense of that term defined by the Tsukuri-
mashou build system. Building Tsukurimashou will not automatically also build FontAnvil.
FontAnvil does not require Tsukurimashou to build. (The very latest development verion
of) Tsukurimashou will look for FontAnvil and use it if found, but will not look inside
its own subdirectories—only in the usual PATH search used for other utility programs. If
Tsukurimashou does not find an executable in the search path named “fontanvil,” it will
fall back to looking for one called “fontforge,” just like earlier versions did.

If you want to use FontAnvil to build Tsukurimashou, you should build and install
FontAnvil first in the usual way, and then start building Tsukurimashou.

All bug reports and other tickets for FontAnvil should be filed through the Tsukuri-
mashou ticket tracker at http://osdn.jp/projects/tsukurimashou/ticket/. Set the
“Component” field to “FontAnvil.”

As a courtesy to Github users, Tsukurimashou’s entire source control system (includ-
ing FontAnvil) is mirrored in my Github account at https://github.com/mskala. But
osdn.jp remains the authoritative public home of the project. You are welcome to clone
the repository—that is why it’s there—but the semi-automated gateway from Subversion
to Git is one-way. Do not file tickets for FontAnvil on Github.

http://tsukurimashou.osdn.jp/fontanvil.php
http://tsukurimashou.osdn.jp/fontanvil.php
http://osdn.jp/projects/tsukurimashou/ticket/
https://github.com/mskala

Chapter 3

Running FontAnvil

FontAnvil is a script interpreter, so in normal operation it is assumed you already have
a script file for it to interpret. Scripts are written in the PE script language described
elsewhere in this document. Script files for FontAnvil are traditionally given the filename
extension .pe (for “PfaEdit”); the extension .ff is also popular. Invoking the FontAnvil
interpreter then proceeds on more or less the same lines as invoking any other script inter-
preter.

3.1 Command-line options

FontAnvil’s command-line syntax attempts to achieve some degree of FontForge
compatibility. However, as of March 2014, FontForge contains at least six different
command-line parsers,’ and also sometimes hands its command lines off to Python for
parsing, so that options interact in complicated ways with each other, with compile-
time settings, with operating system shebang support and whether stdin is a terminal
or pipe, and so on. FontAnvil does not attempt to match all of this behaviour exactly.

FontAnvil uses GNU getopt_long only to parse command-line arguments; this has the
consequence that long options may be specified with - (one hyphen) or -- (two hyphens)
as the flag sequence; using -- is the modern-day Unix convention, but - may be preferable
for FontForge compatibility. Short options require a single hyphen. Options recognized are
as follows.

-command (cmd), -c (cmd) Execute a PE script command given literally on the command
line. FontAnvil will not look for a script file name on the command line if this option is
specified; all arguments starting with the first non-option argument become arguments
to the script. Only the last invocation of this option will be used; unlike, for instance,
Perl, it is not possible to build up a multi-line script by specifying —c multiple times.

-dry, -d Activate a poorly-documented “dry run mode” built into some parts of the Font-
Forge PE script interpreter. This appears to be intended for syntax checking. Most,
but not necessarily all, commands will be skipped. I do not promise that new code
added in FontAnvil will necessarily respect this mode.

"https://github.com /fontforge/fontforge/issues /1277

CHAPTER 3. RUNNING FONTANVIL 10

-help, -usage, -h Display a command-line option help message, and terminate without
executing a script.

-lang (cmd), -1 (cmd) Specify interpreter language. If this option is given with the value
“f£” then it will be ignored for compatibility. Any other value is a fatal error.

-nosplash, —quiet, —script, -i Ignored for compatibility.

-version, -v Display a version and copyright banner, and terminate without executing a
script.

-- Terminate option scanning. All subsequent arguments will be treated as “non-option
arguments” (thus eligible to become script file names or script arguments) even if they
resemble FontAnvil options. This would be what you might use if for some reason
you needed to execute a script file that was named exactly “-script.”

The first non-option command line argument will be taken as the filename of a script
file to execute, unless the —c option or one of its synonyms has overridden this behaviour.
If the filename so specified is a single hyphen, or if there are no non-option command
line arguments at all, then FontAnvil will enter interactive mode, reading commands from
standard input, as described later in this chapter. Any command line arguments after any
script filename will be passed into the script in the variables $1, $2, and so on—even in the
cases of —c and interactive mode.

Option scanning stops at the first non-option argument encountered, which will
usually be treated as the script filename. Any arguments after that become arguments
to the script (passed in the variables $1, $2, etc.) and not options for the FontAnvil
interpreter. For this reason, options must precede the script file name on the FontAnvil
command line. For maximum compatibility, the -script option should be the last
option if you use it at all, with the script file name in a separate argument, not attached
using =.

3.2 Shebang

FontAnvil may be invoked using the shebang convention. Place a line something like
“#!/usr/local/bin/fontanvil” at the top of a file, and make the file executable, to create
a script that can be run like any other program and will automatically use FontAnvil as
the interpreter.

Details of shebang support vary depending on the operating system. On most systems,
the shebang line must specify an absolute path, and the env program may be used to
search for a command name in the path to avoid hardcoding the absolute location of the
interpreter into a script. There are also special considerations applicable to the length of
the interpreter path, arguments specified in the shebang line, and so on.

FontAnvil does not have any special support for shebang. In particular, it does not scan
the script to look for its own name in the shebang line. Since the shebang line by definition
starts with the comment character #, it will be skipped as a comment. FontAnvil just
takes the script file name as an argument from the operating system, and (assuming the

CHAPTER 3. RUNNING FONTANVIL 11

script name does not happen to be something weird that looks like an option) executes
it, with any remaining arguments becoming arguments to the script. This is normally the
desired behaviour. However, be aware that it is a technical difference from FontForge, which
attempts to determine whether it was invoked via the shebang mechanism and do smart
things depending the answer, including working around operating systems that support this
feature only poorly. FontForge may possibly require options in the shebang line in at least
some cases, to select which scripting language it will use.

If you try to specify command-line options in the shebang line, then depending on
your operating system’s support it is possible that FontAnvil will not see the options even
though FontForge would. Some operating systems have unintuitive behaviour regarding
options specified in the shebang line; for instance, combining all options into a single string
passed as one argument instead of splitting them on spaces. For this reason, authorities on
Unix often recommend against using options in the shebang line at all; nonetheless, people
continue doing it.

For maximum compatibility with both interpreters, I suggest writing shebang lines in
PE script files as you would write them for FontForge (including mentioning the filename
“fontforge”), and then invoking FontAnvil on the files by other means when desired. That
way, FontForge will see the interpreter name and any options it wants, and FontAnvil will
ignore them.

3.3 Interactive mode and readline

FontAnvil is intended primarily for non-interactive use. However, if it is invoked without a
script file name, or with “-” (a single hyphen) as the script file name, then it will enter a
special interactive mode, where it reads commands from standard input and executes them
immediately, line by line, rather than reading from a script file. This can be convenient for
one-off editing tasks and testing the syntax and behaviour of script commands.

If FontAnvil was compiled with the GNU Readline library and detects that standard
input is a terminal, then interactive mode will also offer command-line editing and history
using Readline. The usual Readline keystrokes (such as up and down arrows to recall earlier-
typed command lines) become available in this mode, and there are some minor changes to
the output formatting (in particular, the display of a command prompt) to make it friendlier
for interactive users.

Chapter 4

Data model

Very many difficulties users have with font editing (both scripted and interactive) come
from an incomplete understanding of the data model involved: what entities exist in a font
and a font editor and what relationships those entities have with each other. The distinction
between glyphs and characters seems to be an especially frequent cause of confusion. This
chapter attempts to describe FontAnvil’s data model in a way that will be useful to script
programmers.

4.1 Fonts in memory

Because PE script was originally designed for controlling a GUI font editor, it treats fonts
as documents to be opened and closed, much as a GUI editor might.

At any given time there exists a global set of fonts that are open. These are stored in
RAM. Open fonts are associated with filenames, even if the filenames do not actually exist on
disk; the interpreter will assign temporary filenames (usually similar to “Untitledl.sfd”)
to fonts that were created in memory and not loaded from files. The filenames should
be unique (no more than one open font sharing a filename), and it’s not easy to create a
situation where they are non-unique, but I suspect that having distinct open fonts with
duplicate filenames may be technically possible and likely to trigger bugs if attempted.

The set of open fonts is technically a sequence (with a specific order), not an unordered
set, and the order is visible to scripts through the $firstfont and $nextfont built-in
variables, but this fact is seldom important.

At most one of the open fonts may be the current font. This state is global. Most
font-editing operations implicitly apply to the current font. The Open() built-in function
sets the current font, but its exact behaviour is context-sensitive. If the specified filename
is already an open font, then Open() just sets the current font to that one. If the specified
filename is not already an open font, then Open() loads it from disk, causing it to become
an open font, before setting the current font to that one.

When the interepreter starts up, the set of open fonts is empty and there is no current
font. In this state, any operation that implicitly refers to the current font will fail; scripts
can only use a small subset of the language to create or open a font and make it current.
The Close () built-in function removes the current font from the set of open fonts (without
saving it to disk—that must be done as a separate operation if saving is desired) and places
the interpreter back into the state of having no current font. Note that the existence of a
no-font state is a difference between PE script and the FontForge GUI. The GUI insists on

12

CHAPTER 4. DATA MODEL 13

always having at least one open font and always having a current font, enforcing this rule
by automatically loading fonts from earlier editing sessions, automatically creating a new
empty font if the load fails, choosing another open font to be current when one is closed,
and terminating the program when the last font is closed.

4.2 Glyphs and slots

Here are two pictures of Don Quixote.!

The pictures are different, but they are pictures of the same fictional character. In the
same way, we can have several pictures of the same character in a writing system.

a 4 a

What these three “a”s share is the character; what they do not share is the glyph. Fonts
contain collections of glyphs, concrete things, which are pictures of characters, abstract
things. It is often the case that in any given font, each glyph corresponds to exactly
one character and vice versa; but there are many important exceptions to that rule. To
understand how FontAnvil processes fonts it is important to bear in mind that fonts are
collections of glyphs, and glyphs are not the same thing as characters despite being closely
connected with characters.

This glyph (the classic ff-ligature) is not associated with one character, but with a
sequence of two characters:

There is no double-f character, as a separate abstract entity distinct from just two
ordinary “f”s in a row, in the English language. There is no standard character code for
such a thing.? Nonetheless a font for high-quality typesetting of English must contain a
glyph for this double-f entity that is not quite a character. Despite such exceptions, one
glyph per character is true most of the time in English. In some other languages, the
conceit of glyph-character equivalence breaks down entirely. In Arabic, for example, many

Left: Gustave Doré, 1863. Right: Honoré Daumier, 1868.
2 Actually, there is one in Unicode, but you’re not supposed to really use it; the details of that are beyond
the scope of this discussion.

CHAPTER 4. DATA MODEL 14

characters have four or more visual forms requiring separate glyphs in a font, depending on
how they connect to neighbouring characters.

FontAnvil represents a font in memory as including a zero-based array of glyph slots.
The array is variable-sized, but it is a true array data structure, not a list: all slots from
index 0 up to one less than the number of slots exist as long as the in-memory font does.
Creating a new glyph means overwriting the possibly-blank previous contents of some slot.
Destroying a glyph means filling the slot with a blank glyph, but the slot continues to exist.
Changing the number of slots can only be done by increasing or decreasing the length of
the array, and encodings (described in the next section) may constrain the number of slots.

Glyph slots in a font always have glyph numbers which are their indices in the array.
Glyphs in a font cannot meaningfully be said to be in any specific order other than the
order determined by the array indices. Every glyph has a number, and every number has a
glyph slot. No two glyphs can have the same slot; two slots may contain identical glyphs,
or even a “reference” from one to the other, but the two slots’ contents will not truly be
the same entity. A glyph slot might be blank, that is devoid of outlines and other data, and
people usually think of such slots as not really being glyphs. But some attributes of a glyph
slot (such as its name) are required to always have non-null values, even on blank slots.

FontAnvil’s in-memory glyph slots can be blank but never truly empty. However,
most on-disk file formats do have a concept of a glyph failing to exist at all. Blank slots
are usually not written when saving from memory to disk, and loading a file from disk
to memory that does not fill all slots will usually leave the others blank.

Every open font has a selection, which specifies a set of the glyph slots (more about
glyph slots in the next section). Many editing operations implicitly operate on the selection
of the current font. Although every open font has a selection, usually only the selection of
the current font is relevant. Open fonts retain their selections through changes in which
open font is current.

The selection is actually a sequence, not a set, of glyph slots. That means the slots in it
can be selected in a specific order. This distinction is relevant in the FontForge GUI, where
you can select several glyphs in a specific order, open a “Metrics” window, and have them
come up in the order you selected them. However, each glyph slot can appear at most once
in the selection, and the order of the selection is seldom if ever observable or controllable
from the scripting language. It is usually better to think of it as a set with no specific order,
not as a sequence.

The selection is applied at the level of glyph slots. It is perfectly possible for the selection
to include blank glyph slots, because it is defined as a set of slots, not a set of non-blank
glyphs. Nonetheless, one often only cares about the non-blank glyphs, and some commands
for manipulating the selection will automatically limit themselves to slots that are not blank.

Glyph slot numbers may or may not be closely connected to Unicode, ASCII, or other
character codes, depending on issues discussed in the next section. It is important to be
aware that glyph slot numbers are not the same type of entity as character codes, despite
sometimes having equal numerical values.

CHAPTER 4. DATA MODEL 15

4.3 Encodings

Fonts do not exist solely to be edited with FontAnvil. To be useful, a font must eventually
be saved in some format understandable by a word processor or similar application; and the
external software must be able to associate the glyphs in the font with the characters in text
that will be typeset using the font. There will necessarily exist some code that associates
numbers called code points with the different characters that might appear in text, and a
font file must explicitly or implicitly describe which code points go with which glyphs. It is
worth emphasizing that code points refer to characters, not glyphs.

The ASCII code is familiar to many computer users, especially in the English-speaking
world, but is inadequate for languages other than English. Today, nearly everybody uses
a code called Unicode. Unicode’s code points coincide with ASCII for all the characters
covered by ASCII; but it also covers many thousands of other characters. It is supposed
to be a universal code for all text in all human languages. But Unicode did not always
exist and its use was not always universal. Most common font formats are designed to also
accomodate character encoding schemes predating Unicode or simply other than Unicode.
Frequently, a font file will include translation mappings for several different codes, in the
hope that software using the font can find its own preferred code among the choices. There
needs to be a way to translate code points (which identify characters) into glyph numbers
(which identify glyphs), even in cases like ligatures and variant glyphs where this translation
is more complicated than a simple one-to-one lookup.

FontAnvil includes several mechanisms for addressing these issues, but the most signif-
icant is that of the encoding. The encoding is a property of each font (global to the font)
and describes a set of assumptions and constraints about the relationships between code
points and glyph numbers.

Every glyph slot in a font always has a glyph number, no two slots can have the
same number, and the set of glyph numbers that exist is always the set of integers from
0 up to one less than the number of glyphs in the font. Every code point designates
at most one glyph slot. But a glyph slot might have zero, one, or more than one code
point; a code point might have no glyph slot; and the set of code points that exist might
not be a simple interval of the integers. Nonetheless, the font’s encoding may trigger
the enforcement of constraints that make the code point situation less complicated.

Most of the possible values of the encoding field are associated with standardized char-
acter codes defined by external organizations. Fach code defines a meaning for a range of
code points from 0 up to some number that depends on the code. When the encoding is
associated with an externally standardized code other than Unicode, Font Anvil enforces the
following constraints:

e There must be at least as many glyph slots as there are code points in the code.

e Glyph slots in the range 0 through one less than the number of code points in the
code correspond one-to-one with the code points.

e Any glyph slots with greater indices have no code points.

The case of unencoded glyphs, those in glyph slots beyond the end of the code point range
specified by the encoding, is important. Glyphs like the fi-ligature mentioned earlier, or the

CHAPTER 4. DATA MODEL 16

alternate forms of letters in a script like Arabic, usually fall into this category. When a word
processor typesets text using a font, it starts out by translating the code points into glyphs
one-for-one according to the basic code points of the glyph. The result of that translation
cannot contain unencoded glyphs. But the basic one-for-one translation of code points to
glyphs is only a starting point. Further processes can merge and split glyphs so that more
than one character can be typeset with one glyph, one character can be typeset with more
than one glyph, and which glyph goes with which character can be different in different
contexts. These further processes can bring unencoded glyphs into play. The encoding
does not specify the number of unencoded glyph slots that may exist after the range of
encoded glyphs. The unencoded glyph slots may be manipulated by built-in functions like
SetCharCnt (); encoded glyph slots may not be added or removed.

Each glyph slot has a property called the Unicode number. This is a code point (in
the code that is named Unicode), but I am going to call the number in this field just
a “number” to distinguish it from the code points that exist in non-Unicode encodings.
When the encoding is one of the standardized non-Unicode encodings, the constraint is
enforced that the Unicode number must be the correct translation (using the iconv library)
of the glyph number for encoded glyphs, or the null value of -1 for unencoded glyphs. For
example, if the font’s encoding is KOI8-R (commonly used for Russian text), then glyph slot
number 241 is for the letter “ya,” which looks like a backwards R. FontAnvil will enforce
the constraint that this slot’s Unicode number is 0x042F, which is the Unicode code point
for that letter. “The constraint is enforced” means that if you try to change the value of the
Unicode number field, the font’s encoding will be immediately changed to Custom. Editing
the Unicode numbers is not compatible with keeping the encoding and its fixed mapping.

But not every value for the font’s global encoding field is associated with an external
standard other than Unicode. When the font’s encoding field refers to some form of Unicode,
or does not refer to an external standard, then additional special considerations apply; and
in fact, these special cases are the most popular and useful values for the encoding field.

When the encoding is set to Custom, few encoding-related constraints are enforced.
There may be any number of glyph slots. Any slot may have a Unicode number, or not,
and there is not necessarily any relationship between the Unicode numbers and the glyph
slots.

There are two Unicode encoding options, Unicode (BMP) and Unicode (Full). These
each behave more or less like the non-Unicode standardized encodings. One difference is
that it appears sometimes possible to set the Unicode number of a glyph slot such that it
does not match its glyph number. This may be a bug. FIXME investigate further - this
description may possibly be simplified if Unicode and non-Unicode turn out to really behave
the same.

FIXME investigate and document the “Original” encoding option.

Glyph slots have names. All glyph slots have non-empty names, including blank slots,
and all names must be unique within a font. The names are sometimes automatically
assigned and may also be manipulated by script commands; but constraints (including the
requirement for uniqueness) will be enforced on such manipulation.

People who think they want to edit glyph slot names are often wrong.

FIXME document name lists

CHAPTER 4. DATA MODEL 17

4.4 The .notdef glyph

FIXME

4.5 The clipboard

There is a global entity called the clipboard, which holds glyph data of the kind that might
be stored in glyph slots, such as outlines, anchors, and references. The clipboard is like a
font in that it can store a bunch of slots’ worth of data, in a definite order, but the clipboard
is unlike a font in that the slots do not have meaningful numbers and it does not store slot
attributes other than glyph data, such as slot names and code points.

The usual way of using the clipboard is somewhat like using the clipboard in any common
GUI document editor: select some slots, do a cut or copy operation, select some other slots
(even in a different font), and do a paste operation. Here is typical code to copy the
uppercase ASCII alphabet from an existing font into a new font (leaving many things in
the new font empty or default, which may cause problems later):

Open("fontl.sfd");
Select(’A’,°Z7);
Copy Q) ;

New () ;
Select(’A’,°Z°);
Paste();
Save("font2.sfd");

One thing to be aware of is that Paste() always writes into the selection, and so you
must create a nonempty selection for Paste() to be meaningful. This differs from a word
processor that can “insert” text; FontAnvil treats a font as fixed framework of glyph slots
that can only be changed by overwriting. Inserting or deleting in the middle, in a way that
changes the number of slots that exist, would disrupt the framework of the encoding and is
rarely, if ever, what you really want.

A glyph slot’s name is associated with the glyph slot, not with the glyph data stored
in the slot. The slot name will not move with the glyph data when the glyph data is
cut and pasted into a new slot. Unicode code points, and any other encoding numbers,
are also parts of the glyph slot and will not move with cut and pasted glyph data.

4.6 Look-up tables

FIXME

Chapter 5

Language reference

I did not invent the PE scripting language, and the person who did never fully
specified or documented it. This documentation is based partly on reverse engineering;
is descriptive, not prescriptive; and may not be complete, nor even correct as far as it
goes. The only way to be sure what a PE script will really do is to run it and find out,
like Rikki-Tikki-Tavi.

5.1 Basic syntax

Scripts are text files. The traditional filename extension is .pe ; scripts in the wild have
also been seen using a .ff extension.
Comments may be marked in any of these ways:

hash for a shell-like comment to the end of the line
// two slashes for a C++-like comment to the end of the line

/*
C-style comment delimiters,
which may cover multiple lines.

*/

FontForge looks for a shebang line at the top, pointing at itself, and may also attempt to
recognize command-line options there to distinguish between PE scripts and Python scripts.
FontAnvil only supports PE scripts and is planned to more or less ignore the shebang;
however, this code has not yet been worked over since its importation from FontForge and
may not really work as desired at the moment.

Newlines are syntactically significant, marking the ends of statements. To continue
a statement onto more than one line, you must use a backslash to escape the newline.

Semicolons also mark the ends of statements, and may be used to join multiple state-
ments onto a single line. Semicolons at the ends of lines create empty statements, which
are ignored.

18

CHAPTER 5. LANGUAGE REFERENCE 19

PE script is case sensitive for reserved words, variable names, and built-in function
names.

5.2 Data types, variables, and scope

Values have associated types. Variables can hold values of arbitrary type and remember
what type they are. The types are:

e integer

floating-point number

Unicode code point (note that this is a distinct data type from “integer”)
e string

e array

Syntax for constant values looks like this:

integers in decimal, hexadecimal, or octal, using C syntax

123 # first digit nonzero means decimal
0x52 # first digits Ox means hex, this is 82 decimal
041 # first digit zero and not hex means octal, this is 33 decimal

floating-point numbers indicated by the decimal point; note the decimal
point is always . regardless of locale

123.45 # basic decimal float

4.9eb # scientific notation, this is 490000

Unicode code points are hexadecimal numbers marked by Ou
Oulf4a9 # everybody’s favourite

strings have single or double quotes
’Single’

"double"

"foo\bar" # \n for newline

it is not clear what other escapes may exist

array literals use square brackets and commas
[1,2,3,0uABC, foo’]

Literal string constants in PE script syntax are limited to 256 characters. You can,
however, construct longer strings with multiple literals and the concatenation operator.

CHAPTER 5. LANGUAGE REFERENCE 20

The language seems intended to allow arrays to have more than one dimension (i.e.
each element of an array may itself be an array) but such arrays are currently broken
in both FontForge and FontAnvil, and usually cause the interpreter to crash. I hope to
fix this bug in FontAnvil, but if I fix it and FontForge doesn’t, then any scripts that
make use of multidimensional arrays will be incompatible with FontForge.

5.3 Operators

FIXME

5.4 Control structures

FIXME

5.5 Most of the built-in functions

FIXME

This section should document the functions. For the moment, there is only a list:

ATan2, AddATT, AddAccent, AddAnchorClass, AddAnchorPoint, AddDHint, AddEx-
trema, AddHHint, AddInstrs, AddLookup, AddLookupSubtable, AddPosSub, AddSizeFea-
ture, AddVHint, ApplySubstitution, Array, AskUser, AutoCounter, AutoHint, Autolnstr,
AutoKern, AutoTrace, AutoWidth, Autotrace, BitmapsAvail, BitmapsRegen, BuildAc-
cented, BuildComposite, BuildDuplicate, CIDChangeSubFont, CIDFlatten, CIDFlatten-
ByCMap, CIDSetFontNames, CanonicalContours, CanonicalStart, Ceil, CenterInWidth,
ChangePrivateEntry, ChangeWeight, CharCnt, CharInfo, CheckFor AnchorClass, Chr, Clear,
ClearBackground, ClearCharCounterMasks, ClearGlyphCounterMasks, ClearHints, ClearIn-
strs, ClearPrivateEntry, ClearTable, Close, CompareFonts, CompareGlyphs, Control AfmLi-
gatureOutput, ConvertByCMap, ConvertToCID, Copy, CopyAnchors, CopyFgToBg, Copy-
GlyphFeatures, CopyLBearing, CopyRBearing, CopyReference, CopyUnlinked, CopyVWidth,
CopyWidth, CorrectDirection, Cos, Cut, DebugCrashFontForge, Default ATT, DefaultOther-
Subrs, DefaultRoundToGrid, DefaultUseMyMetrics, DetachAndRemoveGlyphs, DetachG-
lyphs, DontAutoHint, DrawsSomething, Error, Exp, ExpandStroke, Export, FileAccess,
FindIntersections, FindOrAddCvtIndex, Floor, FontImage, FontsInFile, Generate, Gen-
erateFamily, GenerateFeatureFile, Get AnchorPoints, GetCvtAt, GetEnv, GetFontBound-
ingBox, GetLookuplnfo, GetLookupOfSubtable, GetLookupSubtables, GetLookups, Get-
MaxpValue, GetOS2Value, GetPosSub, GetPref, GetPrivateEntry, GetSubtableOfAnchor-
Class, GetTTFName, GetTeXParam, Glyphlnfo, HFlip, HasPreservedTable, HasPriva-
teEntry, Import, InFont, Inline, Int, InterpolateFonts, IsAINum, IsAlpha, IsDigit, IsFi-
nite, IsHexDigit, IsLower, IsNan, IsSpace, IsUpper, Italic, Join, LoadEncodingFile, Load-
Namelist, LoadNamelistDir, LoadPrefs, LoadStringFromFile, Load TableFromFile, Log, Lookup-
StoreLigaturelnAfm, MMAxisBounds, MM AxisNames, MMBlendToNewFont, MMChange-
Instance, MMChangeWeight, MMInstanceNames, MM WeightedName, MakeLine, Merge-
Feature, MergeFonts, MergeKern, MergeLookupSubtables, MergeLookups, Move, MoveRef-
erence, MultipleEncodingsToReferences, NameFromUnicode, NearlyHvCps, NearlyHvLines,

CHAPTER 5. LANGUAGE REFERENCE 21

NearlyLines, New, NonLinearTransform, Open, Ord, Outline, OverlapIntersect, Paste, Pastelnto,
PasteWithOffset, PositionReference, PostNotice, Pow, PreloadCidmap, Print, PrintFont,
PrintSetup, PrivateGuess, PrivateToCvt, Quit, Rand, ReadOtherSubrsFile, Real, Reen-
code, RemoveAllKerns, RemoveAllVKerns, RemoveAnchorClass, RemoveDetachedGlyphs,
RemoveLookup, RemoveLookupSubtable, RemoveOverlap, RemovePosSub, RemovePreservedTable,
RenameGlyphs, ReplaceCharCounterMasks, ReplaceCvtAt, ReplaceGlyphCounterMasks,
ReplaceWithReference, Revert, RevertToBackup, Rotate, Round, RoundToCluster, Round-
Tolnt, SameGlyphAs, Save, SavePrefs, SaveTableToFile, Scale, ScaleToEm, Select, Selec-
tAll, SelectAlllnstancesOf, SelectBitmap, SelectByATT, SelectByColor, SelectByColour,
SelectByPosSub, SelectChanged, SelectFewer, SelectFewerSingletons, SelectGlyphsBoth,
SelectGlyphsReferences, SelectGlyphsSplines, SelectHintingNeeded, Selectlf, SelectInvert,
SelectMore, SelectMorelf, SelectMoreSingletons, SelectMoreSingletonsIf, SelectNone, Se-
lectSingletons, SelectSingletonslIf, Select WorthOutputting, SetCharCnt, SetCharColor, SetChar-
Comment, SetCharCounterMask, SetCharName, SetFeatureList, SetFondName, SetFontHasVer-
ticalMetrics, SetFontNames, SetFontOrder, SetGasp, SetGlyphChanged, SetGlyphClass,
SetGlyphColor, SetGlyphComment, SetGlyphCounterMask, SetGlyphName, SetGlyphTeX,
SetltalicAngle, SetKern, SetL.Bearing, SetMacStyle, SetMaxpValue, SetOS2Value, SetPanose,
SetPref, SetPrefs, SetRBearing, SetTTFName, SetTeXParams, SetUnicodeValue, SetU-
niquelD, SetVKern, SetVWidth, SetWidth, Shadow, Simplify, Sin, SizeOf, Skew, Small-
Caps, Sqrt, StrJoin, StrSplit, Strcasecmp, Strcasestr, Strftime, Strlen, Strrstr, Strskipint,
Strstr, Strsub, Strtod, Strtol, SubstitutionPoints, Tan, ToLower, ToMirror, ToString, ToUp-

per, Transform, TypeOf, UCodePoint, Ucs4, UnicodeAnnotationFromLib, UnicodeBlock-
EndFromLib, UnicodeBlockNameFromLib, UnicodeBlockStartFromLib, UnicodeFromName,
UnicodeNameFromLib, UnicodeNamesListVersion, UnlinkReference, Utf8, VFlip, VKern-
FromHKern, Validate, Wireframe, WorthOutputting, WritePfm, WriteStringToFile,

5.6 Built-in functions in FontAnvil and not in FontForge

Shell: takes one argument, the name of a shell command to execute. Returns the return
value from doing so.

5.7 Built-in functions in FontForge and not in Font Anvil

Because FontAnvil does not support plugins, these built-in functions have been removed
from the language: LoadPlugin, LoadPluginDir.

Similarly, FontAnvil does not store persistent preferences in the user’s home directory,
and the functions to do that have been removed: LoadPrefs, SavePrefs. For the moment,
at least, other functions related to “preference” variables remain in the language.

FontAnvil (in the current version) does not support printing fonts, because support for
this feature necessitates a disproportionate amount of unportable interfacing code to talk
to system-specific printing interfaces. Some future version may support a stripped-down
and portable printing feature, likely writing to files instead of the physical printer, but for
the moment, these functions are unimplemented: PrintFont, PrintSetup.

In FontForge’s history it has several times happened that function names were mis-
spelled, or documented incorrectly. After the errors were discovered the names were changed
in the documents to reflect the designer’s intentions, but the wrong names were kept in the

CHAPTER 5. LANGUAGE REFERENCE 22

code as aliases of the correct ones, in order to avoid breaking any existing scripts that might
have relied on them. The plan is to remove most if not all of these in FontAnvil, bringing
the code closer to the documentation. To date, the function aliases of this kind removed
from FontAnvil are: bAutoCounter, bDontAutoHint, bSubstitutionPoints, BuildComposit,
GetPrefs.

In mainline FontForge, some functions were deprecated and had their implementations
replaced by error messages. In FontAnvil these functions have been removed entirely: Pri-
vateToCvt, RemoveATT.

5.8 Other notes

FIXME

Chapter 6

Licensing

George Williams put most of his work on PfaEdit, and subsequently FontForge, under
licensing notices such as this one:

Copyright © [years] by George Williams

Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

That is what is commonly called a Three-Clause BSD License. There were many subse-
quent contributors to the software (see the AUTHORS file in the root of a distribution tarball
or version control checkout) and many of them were content to keep the same license terms
in place, with or without adding their own names and years to the copyright notice at the
top.

However, some contributors have placed additional restrictions on their work, most
notably GNU GPL3+ licenses like this one:

23

CHAPTER 6. LICENSING 24

Copyright (© [year| [contributor’s name]

This program is free software: you can redistribute it and /or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program. If not, see http://www.gnu.org/licenses/.

The Free Software Foundation takes the position that the three-clause BSD license is
GPL-compatible,! meaning that it is legally permissible for a package that is under GPL3+
as a whole to include material that is under three-clause BSD. The presence of GPL3+
contributions, however, forces the package as a whole to be licensed GPL34. That being the
case, both FontForge and FontAnvil should be treated as GPL3+, just with the awareness
that some files may also be used separately from the package under the less restrictive
three-clause BSD license.

It is the current practice of the FontForge project to encourage contributors of new
material to apply GPL3+ notices to any new files, but retain the BSD notices on files
that already have those. There was an incident in which someone tried to apply a patch
someone else had written to a currently BSD-licensed file in FontForge—with the patch to
become roughly 1/1000th of the file’s total volume. The author of the patch demanded that
the whole file should become GPL3+, overriding the BSD notice on it and the apparent
intentions of the previous contributors to that file. I would like to avoid such incidents.

A few files have other distribution terms. In particular, some parts of the build system
have very permissive licenses.

FontForge attempts to maintain a list of all the licensing terms of all the files in the
project; but their list has never been up to date, cannot reasonably be expected to ever
be up to date nor to stay up to date even if it ever is at one moment, currently contains
incorrect information, and seems unnecessary. I do not propose to make such a list for
FontAnvil.

The current licensing policy for Font Anvil is substantially the same as that of FontForge:

e FontAnvil as a whole is covered by the GPL version 3, or any later version.

e Some files in FontAnvil are also available under less restrictive licenses. You must
consult the notices in those files for details.

e [will place GPL3+ notices on new files I create within FontAnvil, and encourage
others to do the same.

e [will leave files with existing broader-than-GPL notices under their existing notices
(possibly adding my own name and year copyright lines), and encourage others to do
the same.

e I will not accept contributions that entail drastic changes to the licensing status of
work done by persons other than the contributor, and I will discourage the submission
of such contributions.

"Mttp://www.gnu.org/licenses/license-1list.html#ModifiedBSD

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/license-list.html#ModifiedBSD

CHAPTER 6. LICENSING 25

Finally, note that although FontAnvil is associated with the Tsukurimashou Project, its
licensing is not identical to that of other things included in the Tsukurimashou Project.

	Title Page
	Copyright
	Contents
	Introduction
	Building FontAnvil
	Dependencies
	From a version control checkout
	From a distribution package
	FontAnvil and Tsukurimashou

	Running FontAnvil
	Command-line options
	Shebang
	Interactive mode and readline

	Data model
	Fonts in memory
	Glyphs and slots
	Encodings
	The .notdef glyph
	The clipboard
	Look-up tables

	Language reference
	Basic syntax
	Data types, variables, and scope
	Operators
	Control structures
	Most of the built-in functions
	Built-in functions in FontAnvil and not in FontForge
	Built-in functions in FontForge and not in FontAnvil
	Other notes

	Licensing

