IDSgrep, version 0.3

Matthew Skala

August 26, 2012

Contents

Quick start

Introduction
What’s new e e e e e e
Download, build, test, and install
Unicode IDSes
Interface to CHISE IDS e
Interface to KanjiVG o L e
Interface to EDICT2 e
Interface to Tsukurimashou

Invoking idsgrep
Command-line options L L e
Environment variables

Technical details
The data structure oL e e e
EIDS syntax o e e
Matching o L e
Match anything e e
Match anywhere
Match children in any order
NOT . .

OR . e
Literal tree matching
Associative matching
Regular expression matchingo L L
Cooked output

Bibliography

Quick start

Use idsgrep much as you would use grep:

idsgrep [(options)] (pattern) [(file)...]

Its general function is to search one or more files
for items matching a pattern, like grep [7] but with a
different pattern syntax. Although potentially usable
for an unlimited range of tasks, idsgrep’s motivating
application is to searching databases of Han script
(Chinese, Japanese, etc.) character descriptions. It
provides a much more powerful replacement for the
“radical search” feature of dictionaries like Kiten [8]
and WWWJDIC [5].

The syntax for matching patterns, and the range
of command-line options available, are complicated.
Later sections of this document explain those things
in detail; for now, here are some examples.

idsgrep @A dictionary
A literal character searches for the decomposi-
tion of that character, exact match only.

idsgrep -d
The -d option with empty argument searches a
default collection of dictionaries.

idsgrep -dtsuku &

The -d option can be given an argument to
choose a specific default dictionary. Note the ar-
gument must be given in the same argv-element
with the -d; the syntax -d tsuku with a space
would mean “Use the default dictionaries and
search for the (syntactically invalid) pattern
“tsuku.’”

othersoft | idsgrep A
Standard input will be used if no other input
source is specified.

idsgrep -d ... H
Three dots match their argument anywhere, so
this will match H, ¥, and #.

idsgrep -d ¥’
A question mark, which will probably require
shell quoting, matches anything. This is most
useful as part of a more complex pattern.

idsgrep -d
Unicode Ideographic Description Characters can
be used to build up sequences that also incorpo-
rate the wildcards; this example matches char-
acters consisting of something above /1, such as
& and X but not Ji&.

idsgrep -d "[tb] (anything)x’
There are ASCII aliases for operators that may
be inconvenient to type; this query is function-
ally the same as the previous one.

idsgrep -d "&'dA...|EHA°
Boolean prefix operators include & (AND), |
(OR), and ! (NOT). This example matches any-
thing that contains H or A but is not .

Asterisk makes children match in any order; this
example matches H at left or right.

idsgrep -d "@-EA?H?’
At-sign treats an operator as associative; this ex-
ample matches both H? and 2.

idsgrep -d ".../(femoral)’
Slash invokes Perl-compatible regular expres-
sion matching, which might be useful for the
EDICT2-based meaning dictionary.

idsgrep -d "...=?’
Equals escapes matching operators; this example
searches for a literal question mark anywhere in
the tree.

idsgrep -d "\X840C’
Several kinds of backslash escapes allow entering
characters that might not otherwise be available.

idsgrep -d -c indent #j
The -c option selects “cooked” or pretty-printed
output modes.

Introduction

The Han character set is open-ended. Although
a few thousand characters suffice to write the lan-
guages most commonly written in Han script lan-
guages (namely Chinese and Japanese) most of the
time, popular standards define tens of thousands of
less-popular characters, and there are at least hun-
dreds of thousands of rare characters known to occur
in names, historical contexts, and in languages like
Korean and Vietnamese that may still use Han script
occasionally despite now being written primarily in
other scripts.

Computer text processing systems that use fixed
lists of characters will inevitably find themselves un-
able to represent some text. As a result, there is a
need to describe characters in a standard way that
may have no standard code points of their own. A
similar need for descriptions of characters arises when
looking up characters in a dictionary; a user may rec-
ognize some or all the visual features of a character
(such as its parts and the way they are laid out) with-
out knowing how to enter the character as a whole.

IDSgrep’s main function is to query character de-
scription databases in a flexible way. This need was
identified during development of the Tsukurimashou
font family [12]; there, the visual appearance of Han
character glyphs corresponds directly to the Meta-
Post code implementing them, and the desire for code
re-use and consistency often motivates a close exam-
ination of the existing work to answer questions like
“What other characters contain this shape, and how
did we implement it last time?” Standard tools like
grep [7] can sometimes be applied to answer such ques-
tions by searching for subroutine names in the source
code, but the related question of “What other charac-
ters, not yet implemented, could we build that would
use this shape?” requires comparing with some exter-
nal database of the characters commonly used in the
language. How can we run grep on the writing system
itself?

Someone confronted with an unknown character
and wanting to look it up in a more ordinary dic-
tionary to find the meaning may, similarly, want to
search for characters based on specific features while

leaving others unspecified, with questions like “What
characters exist that have the common /& shape at
the bottom, with the upper part divided into two
things side by side? The two things at the top are
shapes I don’t recognize, printed too small for me to
identify them more precisely.” Existing dictionary-
query methods are not adequate for some reasonable
queries of this nature.

For instance, the radical-and-stroke-count
method of traditional character dictionaries requires
identifying the head radical and counting strokes,
both of which may be difficult; dictionary codes
like SKIP and Four Corners key on some layout
attributes but not all; multi-radical search allows the
user to choose whichever radicals they recognize, but
it ignores layout entirely; and computer handwriting
recognition generally works well if and only if the user
is sure of the writing of the first few strokes in the
character. Furthermore, these search schemes often
are implemented only in heavy, non-portable, GUI
software that cannot be automated and mixes poorly
with standard computing environments. IDSgrep
can answer the example query correctly with a single,
simple command line (idsgrep -d "[tb]1[1r]1?2:5:"). This
software is intended to bring the user-friendliness of
grep to Han character dictionaries.

What's new
The main new features in version 0.3 are:

e associative and regular-expression matching;

e the CHISE IDS-derived dictionary, and related
support such as offering a choice of which dictio-
nary to join with EDICT?2; and

e cooked output modes.

Download, build, test, and install

IDSgrep is distributed under the umbrella of the
Tsukurimashou project on Sourceforge.JP [12], http:
//tsukurimashou. sourceforge.jp/. Releases of IDSgrep
will appear on the project download page; develop-
ment versions are available by SVIN checkout from

the trunk/idsgrep subdirectory of the repository. For
the convenience of Github users, the Tsukurimashou
(and thus IDSgrep) repository is also mirrored into a
Github repository [13], but the project on Source-
forge.JP and its SVN repository remain the main
public locations for IDSgrep development and all bug-
tracker items should be filed there.

A minimal default build and install could run
something like this:

tar -xzvf idsgrep-0.3.tar.gz
cd idsgrep-0.3

./configure

make

su -¢ 'make install’

IDSgrep can build dictionaries from the Tsukuri-
mashou font package, which is available through the
same Sourceforge.JP project as IDSgrep; from the
KanjiVG database available at http://kanjivg. tagaini.
net/ [3]; from the CHISE IDS database available at
http://chise.zinbun.kyoto-u.ac. jp/dist/ids/ [1]; or from
the EDICT2 database available at http://www.csse.
monash. edu. au/~jwb/edict.html [4]. For an ideal com-
plete installation of IDSgrep, one would download
all those packages, build Tsukurimashou first, and
make it and the dictionaries available to the IDS-
grep configure script. A precompiled version of the
CHISE IDS-derived dictionary is bundled in the IDS-
grep distribution tarball, so that one should be avail-
able (though not necessarily up-to-date) without any
dependencies.

The configure script will by default make a reason-
able effort to find the dependencies; in many common
cases it is not necessary to specify them on the com-
mand line. Here is a more complete installation pro-
cess relying on configure to find Tsukurimashou in a
sibling directory and the others in the current direc-
tory:

unzip tsukurimashou-0.6.zip

c¢d tsukurimashou-0.6

./configure

make

I install of Tsukurimashou not needed by IDSgrep
cd ..

tar -xzvf idsgrep-0.2.tar.gz

cd idsgrep-0.2

(n -s /some/where/else/kanjivg-20120219.xml.gz .
(n -s /some/where/else/edict2. gz .

(n -s /some/where/else/chise-ids-0.25 .
./configure

malke
make check
su -c ‘make install’

It is necessary to at least configure Tsukuri-
mashou, if not fully build it, before building IDSgrep.
The IDSgrep build will then invoke the Tsukuri-
mashou build to create just the files needed by IDS-
grep. It is not necessary to configure or build CHISE
IDS (which would require first installing other parts
of the larger CHISE system and probably XEmacs as
well); IDSgrep only needs to look at the CHISE IDS
data files.

If the default search fails, the filenames of Kan-
jiVG (.xml or .xml.gz), EDICT2 (.gz), and the direc-
tories containing extracted distributions of Tsukuri-
mashou and CHISE IDS can be specified on the
configure command line with the --with-kanjivg,
--with-edict?, --with-tsuku-build, and --with-chise-ids
options. For other options, run configure --help. It’s
a reasonably standard GNU Autotools [6] configura-
tion script, albeit with a lot of options for inapplicable
installation directories removed to simplify the help
message.

The EDICT2-based dictionary should prefer-
ably include character decompositions from some
other dictionary; which one is selectable by the
--enable-edict-decomp option. Allowed values include
chise, kanjivg, tsuku, and no; the default of auto will
try all of those in that order and use the first that
works. The value no corresponds to simply mapping
every character to itself without further decomposi-
tion; that is obviously not as informative as might be
desired, but it will still allow for regular expression
searches.

The “check” Makefile target runs the IDSgrep test
suite. Some tests require the dictionary files and will
be skipped if those are not present. There is also a
test that will use Valgrind [11] if available, to check
for memory-related problems; if Valgrind is not found
in the PATH, this test will be skipped.

The configure script supports an --enable-gcov
switch to enable meta-testing of the test suite’s cov-
erage. This feature requires that the Gcov coverage
analyser be installed. To do a coverage analysis, run
configure with --enable-gcov and any other desired op-
tions, then do make clean (necessary to be sure all
object files are rebuilt with the coverage instrumen-
tation) followed by make check. Full coverage can only
be attained if the dictionary files are installed (not
just built). Most people would not want to install

the IDSgrep binary itself when built under this op-
tion.

Unicode IDSes
Although IDSgrep uses a more elaborate syntax, it is
well to know about the Unicode Consortium’s “Ideo-
graphic Description Sequences” (IDSes), which are
a subset of IDSgrep’s. These are documented more
fully in the Unicode standard [14].

¢ A character from one of the Unified Han or CJK
Radical ranges is a complete IDS and simply rep-

resents itself. For instance, “X” is a complete
IDS.

e The Ideographic Description Characer (IDC)
code points U4+2FF0, U+4+2FF1, and U+42FF4
through U+2FFB, whose graphic images look
like | , are prefix binary op-
erators. One of these characters followed by
two complete IDSes forms another complete IDS,
representing a character formed by joining the
two smaller characters in a way suggested by
the name and graphical image of the IDC. For
instance, “[1]

These structures may be nested; for instance,

e The IDC code points U+2FF2 and U+2FF3,
which look like are prefix ternary operators.
(Unicode uses the less-standard word “trinary”
to describe them.) One of them can be followed
by three complete IDSes to form an IDS that de-
scribes a character made of three parts, much in
the same manner as the binary operators. For

instance, “tHlIERS%X” describes the character
Kak
=

e As of Unicode 6.1, IDS length is unlimited. Ear-
lier versions specified that an IDS could not be
more than 16 code points long overall nor contain
more than six consecutive non-operator charac-
ters. This rule appears to be have been intended
to make things easier for systems that need to be
able to jump into the middle of text and quickly
find the starts and ends of IDSes.

o IDSes non-bindingly “should” be as short as
possible and should reflect “the natural radical-
phonetic division for an ideograph if it has one.”

The Unicode standard does not mention variation
selectors in any IDS-related context, except that it

offers the possibility of prefixing U+303E, the “ideo-
graphic variation mark,” to the entire sequence to in-
dicate a variation. Such a prefix is explicitly defined
not to be counted as part of the IDS.

My opinion is that Unicode did not intend to per-
mit variation selectors inside IDS syntax. Variation
selectors arguably exist to patch over encoding in-
adequacies resulting from Unicode’s internal politics.
When a code point is not really specific enough, be-
cause it refers to two or more things which you think
are not actually the same thing, then you can add a
variation selector to indicate which thing you really
mean. IDSes, on the other hand, bearing in mind
that they are imported from GBK, operate at a lower
level to specify characters in terms of parts that are
assumed to be adequately encoded. If a code point
to be used in an IDS is not specific enough, then that
element should be described with a smaller fragment
of IDS syntax instead of by using the ambiguous code
point. If the closest match possible is still not per-
fect, then it is time to use U4+-303E. The fact they of-
fer the U+303E mechanism for specifying variations
offers further support to the idea that they did not
intend to allow variation selectors inside IDSes.

However, it’s a difficult question because IDSes,
by addressing the visual appearance of characters in-
stead of their semantics, fundamentally challenge the
basic Unicode principle that code points specify char-
acters and not glyphs. The distinction between char-
acters and glyphs simply cannot be made perfectly
in all cases. For use in cases where variation selec-
tors appear to be appropriate, both CHISE IDS and
IDSgrep extend IDS syntax in such a way as to allow
them in some way.

Interface to CHISE IDS
The CHISE project [1] maintains a database of Han
characters covering multiple languages as part of a
larger processing environment that also includes a
version of XEmacs [15] modified to follow the princi-
ples of the UTF-2000 initiative [9]. It also has con-
nections to GlyphWiki [2]. These systems are docu-
mented primarily in Japanese; English-language doc-
umentation is sparse and not necessarily up to date.

For IDSgrep’s purposes, the most interesting part
of CHISE is a module called CHISE IDS, which in-
cludes a database of about 140000 characters (exact
count depending on the version), with decomposi-
tions in its own extension of Unicode IDS syntax.
The main purpose of this IDS database is to provide a
search capability within the modified XEmacs; there

is also code for a Web search form. From examina-
tion of the database files it appears that the rules for
CHISE IDS’s extended IDS syntax are more or less
as follows.

¢ Generally, Unicode IDS rules apply.

e An XML entity-like sequence of the form &NAME;
counts as a single ideograph. The field indicated
by NAME is a symbolic identifier or database key
defined internally by the project. Such identifiers
have been observed to contain uppercase ASCII
letters, numerals, hyphens, and plus signs; they
usually consist of a short alphabetic prefix, a hy-
phen, and a number. These entity references
are usually used to refer to characters for which
CHISE has an encoding and Unicode doesn’t.

e A Unicode variation sequence (an ideograph fol-
lowed by a variation selector) counts as a single
character.

Although CHISE IDS’s extensions to IDS permit
strings that would not be valid IDSgrep EIDS syntax,
it is easy to convert them into EIDS format. IDSgrep
includes a chiseleids Perl script for that purpose. The
configure script will look for CHISE IDS in a directory
named chise-ids-* in a short list of likely places, or
use the value of the --enable-chise-ids command-line
option if one is given. This directory should simply
be an unpacked CHISE IDS distribution tarball, or
a checkout from the CHISE IDS Git repository. It is
not necessary to run CHISE’s Makefile, which would
require also having and installing other parts of the
larger system.

CHISE IDS distribution tarballs are available
from http://chise.zinbun.kyoto-u.ac.jp/dist/ids/, and
the Git repository URL is http://git.chise.org/git/
chise/ids.git. As of this writing, the latest distribu-
tion tarball was version 0.25, dated June 2010. The
Git version is more recent and may be preferable. The
directory created by checking out the Git version will
probably not have a name recognized automatically
by the build system, so it should be given on the
configure command line with --enable-chise-ids.

As of this writing, roughly 6% of the entries in the
CHISE IDS database include invalid extended IDS
syntax—most often in the form of too many children
for the operators used, or less often, too few. Most
but not all of the errors occur in the IDS-H/K??.txt
files, which are no longer officially maintained. It
appears that the native search tools for the database

generally work on the basis of pure substring searches,
where the higher-level syntax errors that would be de-
tected by the IDSgrep parser can go unnoticed. The
chiseZeids program generates a chise.errs file during
build, listing all the syntax errors it finds (11748 of
them in the current Git version as of this writing);
invalid entries are otherwise ignored and will not ap-
pear in the main output file chise.eids. Although
6% may sound like a lot of errors, the invalid entries
are generally in sufficiently obscure character compo-
nents that it should have little practical effect on the
quality of dictionary lookups: at worst, some char-
acter components may end up not broken down into
pieces as small as would otherwise be possible.

CHISE IDS refers to individual characters in a
more general way than just by single Unicode code
point: sometimes it uses a variation sequence con-
sisting of a kanji code point followed by a variation
selector in the U4+FE00 to U+FEOF or U+E0100
to U+EO1EF ranges, and sometimes it uses a string
that looks like an XML character entity reference,
along the lines of “&NAME;.” Both of these map natu-
rally to IDSgrep’s concept of a multi-character head.
The two-code-point sequence U+840C U+E0101 is
translated to the IDSgrep syntax “<\X840c\X{E0101}>;,”
and the XML-like syntax “&§FU-123;” is translated to
“<fU-123>;.” CHISE IDS does not seem to refer to the
same character in different ways (for instance, a code
point with no variation selector somehow matching
as a default to the same code point with a varia-
tion selector, which might be plausible under Uni-
code’s definition of what variation selectors signify)
and chiseleids does not attempt to accomodate any-
thing like that.

The CHISE IDS database is covered by the GNU
GPL version 2 or later, which is basically compati-
ble with the GNU GPL version 3 used by IDSgrep.
So distributions of IDSgrep can reasonably include
a bundled copy of chise.eids for the benefit of users
who don’t want to download the separate package
and generate their own. Without taking a position on
whether the chise.eids file constitutes “object code”
for the purposes of the GNU GPL as opposed to being
modified source code in itself, I am willing to provide
a copy of the CHISE IDS checkout I used to generate
my version of chise.eids, to anyone who contacts me
about it at mskala@ansuz.sooke.bc.ca. Going directly
to the original distribution points at the URLs given
above is probably a more convenient option for most
users.

Interface to KanjivVG
The KanjiVG project [3] maintains a database of
kanji (Han characters as used by Japanese) in an ex-
tended SVG format, which implies that it is XML.
The kvgleids Perl script, included as part of IDSgrep,
is capable of reading this database and converting it
to Extended Ideographic Description Sequences (EI-
DSes). As described above, if a reasonably recent ver-
sion of KanjiVG’s compressed XML file is available
to configure, then IDSgrep’s build will create such a
dictionary and make install will install it.

KanjiVG describes characters primarily in terms
of strokes, not multi-stroke components, and it at-
tempts to follow the official stroke order and etymo-
logical component breakdown. That approach results
in some peculiarities from the point of view of dic-
tionary searching. For instance, in the kanji [, the
official stroke order is to write two strokes of the en-
closing box, then the central glyph, then the bot-
tom of the box. KanjiVG’s XML file lists two “ele-
ments” identified with the kanji [, one for the first
two strokes and one for the final stroke, with addi-
tional attributes specifying that they are actually two
parts of the same element. KanjiVG has changed its
own standard for how to represent this information in
the recent past, and not all entries have been updated
to the latest standard yet. The current version of
kvgleids does not correctly process [& nor some other
characters with parts written in nonsequential order.
On that particular one it generates a special functor
containing debugging information; for some others, it
may actually generate an EIDS with the same radical
appearing multiple times, following the structure de-
scribed in KanjiVG whether it’s what was intended
or not. As a result, not all entries in the dictionary
will be right. However, only a few are affected by this
issue.

As of March 2012, I (Matthew Skala, the author
of IDSgrep) have become a member of the KanjiVG
project and there is some possibility that KanjiVG’s
database design will change in a way that makes it
easier to recover spatial organization for searching
with IDSgrep.

With the current versions of IDSgrep and Kan-
jiVG, the KanjiVG-derived dictionary contains 6660
entries covering all the popularly-used Japanese
kanji. Note that the KanjiVG input file, and
presumably the resulting format-converted dictio-
nary, are covered by a Creative Commons Attribu-
tion—ShareAlike license, distinct from the GNU GPL
applicable to IDSgrep itself.

Interface to EDICT2
Jim Breen’s JMdict/EDICT project maintains a file
called EDICT?2 [4] which is more like a traditional dic-
tionary, with words and meanings, than a database of
kanji. Such dictionaries are not the primary target of
IDSgrep and IDSgrep’s query syntax is not perfectly
suited to them. However, planned future regular-
expression matching features may make it more prac-
tical to search EDICT2 with IDSgrep, and even in the
current version, there is some value in being able to do
sub-character structural searches on multi-character
words.

If another dictionary besides EDICT2 is available
(subject to configuration by --enable-edict-decomp),
then the build system will generate and install a
dictionary file called edict.eids which represents a
database join of EDICT2 with the other dictionary.
With no other dictionary, the file can still be gen-
erated but will contain no character decomposition
information. A sample entry might look like this:

BA ([#A] @) Ming (dynasty of China))

The head for the entire entry is the head from
the EDICT2 entry. Then the tree is a binary tree
with a comma as the functor and the first child being
the entire decomposition dictionary entry for the first
character. The second child represents the rest of the
entry. With a two-character or longer head, this child
would also be a binary comma with the second char-
acter of the entry head as its first child. In this way
the characters of the entry head are all represented as
left children of commas, forming a linked-list struc-
ture (much like a Prolog linked-list with commas in-
stead of dots as the functors). The final child at the
bottom is a nullary node containing as its functor
simply the rest of the EDICT?2 entry.

The rationale for this syntax is that it allows
a relatively simple way of querying multi-character
words in EDICT2 using the existing IDSgrep query
types. To find an exact match, just query the head
(which will require head brackets and a semicolon
if the query is more than one character long), as
in idsgrep -de "<#FH>;". To search for the first few
characters, commas can be imagined as separators
(though their actual function is quite different) with
a comma at the start and a question mark at the
end, as in idsgrep -de ",#, &?". These queries can be
combined with the sub-character breakdown queries
already supported by the decomposition dictionar-
ies. For instance, idsgrep -de ", #,...|HA!,??" will
search for, and give definitions of, words of exactly

two characters in which the first is # and the second
character contains H or A anywhere. The restric-
tion to exactly two characters is accomplished by the
sub-query “!,??”, which fails to match on the binary
comma that would be present at that point in a longer
word.

EDICT?2 is under the Creative Commons Attri-
bution—ShareAlike license. Since KanjiVG is as well,
that license would presumably also apply to a com-
bined dictionary made from EDICT2 and KanjiVG.
An EDICT?2-only dictionary with no decompositions
from other sources should similarly be under Creative
Commons Attribution-ShareAlike. It might not be
legal to distribute outside one’s own organization a
dictionary formed by joining EDICT2 with CHISE
IDS or Tsukurimashou, because those sources are
covered by versions of the GNU GPL, which is not
compatible with the Creative Commons license.

Interface to Tsukurimashou
IDSgrep is closely connected with the Tsukuimashou
font family [12]. They have the same author; it was
largely for use in Tsukurimashou development that
IDSgrep was developed at all; and IDSgrep’s source
control system is a subdirectory within Tsukuri-
mashou’s. Building IDSgrep in conjunction with
Tsukurimashou allows IDSgrep to extract from the
Tsukurimashou build system a dictionary of charac-
ter decompositions as they appear in Tsukurimashou.
The Tsukurimashou fonts are also necessary to build
this IDSgrep user manual. However, IDSgrep and
Tsukurimashou are distributed as separate packages,
because they have very different audiences and build
prerequisites. Many people who can use one will be
unable to use the other, so it seems inappropriate to
force all users to download both.

When IDSgrep’s configure script runs, it looks for
a valid Tsukurimashou build directory. Ideally, that
would be one in which Tsukurimashou has actually
been fully built; but a directory where the Tsukuri-
mashou configure script has been executed is enough.
If a valid Tsukurimashou build directory is found au-
tomatically or specified with the --with-tsuku-build
option to configure, then when make is run on IDSgrep,
it will recursively go call make eids in the Tsukuri-
mashou build. That is a hook that causes Tsukuri-
mashou’s build system to generate the EIDS decom-
position dictionary, which is then copied or linked
back into IDSgrep’s build directory and can be in-
stalled with IDSgrep’s make install. IDSgrep’s build
will also look in Tsukurimashou’s build directory for

the font “Tsukurimashou Mincho” which is needed to
build this user manual, and will make recursive calls
to make for Tsukurimashou to build that if necessary.

Note that neither Tsukurimashou nor IDSgrep is
a true “sub-package” of the other in the sense of Au-
totools [6], as mediated by the SUBDIRS Automake vari-
able and so on, notwithstanding that a checked-out
SVN working copy of Tsukurimashou will contain a
working copy of IDSgrep in a subdirectory. Running
the Tsukurimashou build will not invoke the IDSgrep
build at all; and running the IDSgrep build is not a
good way to trigger a full Tsukurimashou build, be-
cause it won’t use the preferred -j option, track all
dependencies in detail, nor generate anything that
doesn’t happen to be a prerequisite for the files IDS-
grep needs. If you want to build both systems, it’s
best to build Tsukurimashou first and then build IDS-
grep pointing at Tsukurimashou. Also, these two
packages do not necessarily have the same portability
considerations, and it’s possible that the link between
them may fail even on systems where each package
builds correctly by itself (for instance, possibly on
some systems where GNU Make is installed but non-
default). The link between Tsukurimashou and IDS-
grep provides some convenience for my own frequent
case of making changes to both packages at once.

In order for IDSgrep to work together with
Tsukurimashou, it is necessary that the Tsukuri-
mashou build be one that supports the make eids tar-
get in the first place. Packaged versions of Tsukuri-
mashou from 0.6 onward include EIDS support, and
development versions of Tsukurimashou in the SVN
repository have included EIDS support since early
January 2012.

Invoking idsgrep

The command-line idsgrep utility works much like
most other command-line programs, and like grep [7]
in particular. It takes options and other arguments.
The first non-option argument is an EIDS represent-
ing the matching pattern, and any remaining non-
option arguments are taken as filenames to read. If
there are no filenames, idsgrep will read from standard
input. Output always goes to standard output.

When there is more than one file being read (ei-
ther by direct specification or indirectly with the -d
dictionary option), idsgrep will preface each EIDS in
its output with “:(filename):” to indicate in which
file the EIDS was found. Note that under the EIDS
syntax rules, that creates a unary node senior to the
entire tree, so that the output remains in valid EIDS
format, except in the case of filenames containing
colons, which will be handled via backslash escapes
in the future when those are fully implemented for
output.

Command-line options

-d, --dictionary Read a dictionary from the standard
location. There is a pathname for dictionar-
ies hardcoded into the idsgrep binary, generally
{prefiz}/share/dict, and if this option is given,
its argument (which may be empty) will be ap-
pended to the dictionary directory path, followed
by “x.eids,” and then treated as a shell glob
pattern. Any matching files are then searched
in addition to those otherwise specified on the
command line. A small added wrinkle is that
when more than one file is searched (resulting
in :filename: tags on the output lines), any of
them that came from the -d option will be ab-
breviated by omitting the hardcoded path name.
The purpose of this option is to cover the com-
mon case of searching the installed dictionaries.
Just specifying “-d” will search all the installed
dictionaries; specifying an abbreviation of the
dictionary name, as “-dt” or “-dk,” will search
just the matching one; and it remains possible
to specify a file exactly or use standard input in

10

the usual grep-like way.

-c, ~—cooking Select the output generation and input
canonicalization mode. Requires one argument,
which may be one of the keywords raw, rawnc,
ascii, cooked, or indent, to specify a preset mode;
or a string of up to twelve decimal digits to con-
trol the output in more detail. The default mode
is raw. See the section on “cooked output” in this
manual for more details.

-V, --version Display the version and license informa-
tion for IDSgrep.

-h, —-help Display a short summary of these options.

Environment variables
The idsgrep utility recognizes just one environment
variable, IDSGREP DICIDIR, which if present specifies a
directory for the -d option to search instead of its
hardcoded default.

Note that idsgrep does not pay attention to any
other environment variables, and in particular, not
LC ALl and company. The input and output of this
program are always UTF-8 encoded Unicode regard-
less of locale settings. Since the basic function of this
program is closely tied to the Unicode-specific “ideo-
graphic description characters,” it would be difficult
if not impossible for it to work in any non-Unicode
locale. Predictability is also important because of
the likely usefulness of this software in automated
contexts; if it followed locale environment variables,
many users would have to carefully override those all
the time to be sure of portability. Instead of creating
that situation, idsgrep by design has a consistent in-
put and output format on all systems and users are
welcome to pipe things through a conversion program
if necessary.

Technical details

This section is intended to describe IDSgrep’s syn-
tax and matching procedure in complete precise de-
tail; and those things are, in turn, designed to be
powerful rather than easy. As a result, the descrip-
tion may be confusing for some users. See the exam-
ples in the “Quick start” section for a more accessible
introduction to how to use the utility.

The system is best understood in terms of three
interconnected major concepts:

e an abstract data structure;

e a syntax for expressing instances of the data
structure as “Extended Ideographic Description
Sequences” (EIDSes);

¢ a function for determining whether two instances
of the data structure “match.”

Then the basic function of idsgrep is to take one
EIDS as a matching pattern, scan a file containing
many more, and write out the ones that match the
matching pattern. The three major concepts are de-
scribed, one each, in the following sections. A final
section describes options for how the command-line
idsgrep program generates EIDS syntax on output.

The data structure
An EIDS tree consists of the following:

An optional head, which if present consists of a
nonempty string of Unicode characters.

A required functor, which is a nonempty string
of Unicode characters.

A required arity, which is an integer from 0 to 3
inclusive.

A sequence of children, of length equal to the
arity (no children if arity is zero). Each child is,
recursively, an EIDS tree.

Trees with arity zero, one, two, and three are re-
spectively called nullary, unary, binary, and ternary.

Note that these “nonempty strings of Unicode
characters” will very often tend to be of length one
(single characters) but that is not a requirement.
They cannot be empty (length zero); the case of a
tree without a head is properly described by “there
is no head,” not by “the head is the empty string.”
At present no Unicode canonicalization is performed,
that being left to the user, but this may change in
the future. Zero bytes (U+0000) are in principle
permitted to occur in EIDS trees, but because Unix
passes command-line arguments as null-terminated C
strings, they can only be entered in matching pat-
terns via backslash escape sequences.

Typically, these trees are used to describe kanji
characters. The literal Unicode character being de-
scribed will be the head, if there is a code point for it;
the functor will be either an ideographic description
character like i if the character can be subdivided,
or else nullary ; if not. Then the children will corre-
spond to the parts into which it can be decomposed.
Some parts of the character may also be available
as characters with Unicode code points in their own
right; in that case, they will have heads of their own.

EIDS syntax
Unicode’s IDS syntax serves a similar purpose to IDS-
grep’s extended IDS syntax, but it lacks sufficient
expressive power to cover some of IDSgrep’s needs.
Nonetheless, EIDS syntax is noticeably derived from
that of Unicode IDSes. Broadly speaking, EIDSes are
IDSes extended to include heads (which we need for
partial-character lookup); bracketed strings as func-
tors (which we need for capturing arbitrary data);
and with arbitrary limits on allowed characters and
length relaxed (needed for complex characters and so
that matching patterns can be expressed in the same
syntax).
Here are some sample EIDSes:

11

Hw{lip?
k...B...
[tb]+[orl[lr1?B[Ir]1B?

The first three of these examples are valid in the
Unicode IDS syntax. The next two contain heads,
and are typical of what might exist in a dictionary
designed to be searched by the idsgrep command-line
utility. The last three might be matching patterns a
user would enter.

EIDS trees are written in a simple prefix notation
that could be called “Polish notation” inasmuch as it
is the reverse of “reverse Polish notation.” To write a
tree, simply write the head if there is one, the functor,
and then if the tree is not nullary, write each of the
children. Heads and the functors of trees of different
arity are (unless otherwise specified below) written
enclosed in different kinds of brackets that indicate
the difference between heads and functors, and the
arity of the tree when writing a functor.

The basic ASCII brackets for heads and functors
are as follows:

head < > <example>
nullary functor (0) () (example)
unary functor (1) . . .example.
binary functor (2) [1 [examplel
ternary functor (3) { } {example}

Note that the opening and closing brackets for
unary functors are both equal to the ASCII period,
U+002E.

Some sequences of Unicode characters beginning
with “\” (ASCII backslash, U+005C) are treated spe-
cially. Backslash followed by a character from a short
list of ASCII Latin letters introduces an escape se-
quence used to substitute for a character that would
otherwise be hard to type; backslash followed by
any other character (including a second backslash)
is equivalent to the other character, but without any
special meaning it would otherwise have had. Thus,
backslash can be used for instance to include literally
in a bracketed string the closing bracket that other-
wise would mark the end of the string.

The backslash-letter escapes are listed below.
Note that the letters identifying the type of escape
sequence are case-sensitive, and all are lower-case ex-
cept “\X.” However, for sequences that take a param-
eter, the parameters are not case-sensitive. Note that
all characters inside an escape sequence must be lit-
eral ASCII, except in the “default” case of a single
backslash used to escape a single non-ASCII charac-
ter. It is not permitted to use recursive backslash
escapes to create some of the characters that make

12

up a multi-character escape sequence like “\x{}.”

\a ASCII BEL (U40007)

\b ASCII BS (U+40008)

\cX ASCII control character X
\e ASCII ESC (U+001B)

\f ASCII FF (U+000C)

\t ASCII HT (U+0009)

\n ASCII LF (U40004A)

\r ASCII CR (U4000D)
\xHH two-digit Unicode hex
\XHHHH four-digit Unicode hex

\x{Hz} \X{H 2}

The \c escape takes a parameter consisting of a
single ASCII Latin letter character (only); it is equiv-
alent to typing Ctrl plus that letter (case insensi-
tive) on a standard keyboard, that is the ASCII con-
trol code in the range U+0001 to U4+001A obtained
by subtracting 64 from the uppercase letter’s ASCII
code or 96 from the lowercase letter’s ASCII code.

The hexadecimal escapes \x and \X offer a choice
of two-digit, four-digit, or variable-length (enclosed
by curly braces) hexadecimal specification of Unicode
code points. The hex codes are case-insensitive. Val-
ues greater than 1FFFFF, and therefore outside the
Unicode range, will be replaced by the Unicode re-
placement character U+FFFD.

Parsing of bracketed strings has a few features
worth noting. First, there is no special treatment of
nested brackets. After the “<” that begins a head, for
instance, the next unescaped “>” will end the head,
regardless of how many other instances of “<” have
been seen. However, because no head or functor can
be less than one character long, a closing bracket
immediately after the opening bracket (which would
otherwise create an illegal empty string) is specially
treated as the first character of the string and not as
a closing bracket. Thus, “0)” is legal syntax for a
functor equal to a closing parenthesis, in a nullary
tree; and “...” is a functor equal to a single ASCII
period in a unary tree, an important example be-
cause it is the commonly-used match-anywhere oper-
ator. A bracket character specified via a backslash es-
cape, whether by preceding the literal character with
a backslash or by giving its hexadecimal code in a
“\x”7 or “\X” construction, is never taken to start or
end a bracketed string.

Each pair of ASCII brackets also has two pairs of
generally non-ASCII synonyms, as follows:

variable-length Unicode hex

< > [1 «
C)y «
[1 € 1 [1
{1 Co ‘1

The closing synonymous brackets for functors of
unary trees are always identical to the opening brack-
ets. A string may be opened by any of the three
opening bracket characters for its type of string; but
then it must be closed by the closing bracket char-
acter that goes with the opening bracket. Brackets
from other pairs are taken literally and do not end the
string. For instance, “ [<example>1 ” is a head whose
value consists of “<example>” including the ASCII an-
gle brackets. There are several reasons for the exis-
tence of the synonyms:

They look cool.

There is an established tradition of using
[enticular brackets] for heads in printed dic-
tionaries, which is exactly their meaning here.

Allowing ASCII colons to bracket unary-node
functors makes possible a more appealing and
grep-like syntax for idsgrep’s output in the case
of processing multiple input files.

Allowing more than one way to bracket each kind
of string makes it easier to express bracket char-
acters that may occur literally in a string.

The non-ASCII brackets may be easier to type
without switching modes in some input methods.

On the other hand, keeping an ASCII option for
every bracket type allows matching patterns to
be entered on ASCII-only terminals.

Multiple bracket types allow for creating human-
visible computer-invisible distinctions in dictio-
nary files, for instance to flag pseudo-entries that
contain metadata, without needing to create a
special syntax for comments.

If a character other than an opening bracket oc-
curs unescaped in an EIDS where an opening bracket
would be expected, it is treated in one of three ways.

e« ASCII whitespace and control characters,
U-+0000 to U4-0020 inclusive, are ignored. In the
future, this treatment might be extended to non-
ASCII Unicode whitespace characters, which are
best avoided because of the uncertainty.

13

e Some special characters, such as “/1},” have “sug-
ary implicit brackets.” If one of these characters
appears outside of brackets, it will be interpreted
as a functor whose value is a single-character
string equal to the literal character, and a fixed
arity that depends on Wthh character it is. For
instance, “li 11”7 will be parsed identi-
cally. A list of characters getting this treatment

is below.

Any other non-bracket character has a “syrupy
implicit semicolon.” That means it will be inter-
preted as a complete nullary tree with a single-
character head equal to the literal character, and
a single semicolon as the functor. For instance,
“x” and “<x>(;)” will be parsed identically. Be-
cause semicolon itself has sugary implicit nullary
brackets, we could also write “<x>;” for the same

effect.

Here are all the characters that have sugary im-
plicit brackets, with the brackets they 1mply G) @
.60 181 L1 [[; ‘

] =

Note that the sugary and syrupy implications of a
character are only relevant when the character occurs
where an opening bracket of some type would other-
wise be required; inside a bracketed string, characters
are taken literally unless they end the string or make
up escape sequences. Characters created by escape
sequences are always syrupy outside a string and al-
ways literal inside a string; they never start or end
bracketed strings nor have any special sugary mean-
ing they would otherwise have.

Characters, for the purposes of EIDS parsing, are
strictly single Unicode code points. Such things as
combining accents and variation selectors are parsed
as separate characters from the bases to which they
may be applied. The sugary and syrupy parsing rules
apply only to single characters. Thus, appropriate
brackets are necessary whenever a sequence contain-
ing more than one code point is to be treated as a
single head or functor.

It is an intentional consequence of these rules that
all syntactically valid Unicode IDSes are syntactically
valid EIDSes, but the converse is not true. CHISE
IDS extended IDSes can easily be converted to this
syntax but in general are not valid IDSgrep EIDSes
in themselves.

Although it is technically not a parsing issue but
rather a transformation applied to the tree after pars-
ing, there is one more issue to mention: some functors

have aliases. If a functor and arity matches one of the
aliases on the following list, it will be replaced with
the indicated single-character functor. The idea is
to provide verbose ASCII names for single-character
functors of special importance to the matching al-
gorithm. Note that the single-character versions are
always the canonical ones, and although the brackets
are shown explicitly for clarity, they are nearly all
characters from the “sugary implicit” list. This fea-
ture may be disabled or modified using some settings
of the “-¢” command-line option; see the section on
output cooking for more information.

(anything) = () .anywhere. = ...
.not. = .. .Tegex. = ./
.equal. = .unord. = Lk
.assoc. = [and] =
[or] = [lr] =
[tb] = [enclose] =
[wrapul = [wrapdl =
[wrap!] = [wrapull =
lwrapur]l = [wraplll =
[overlap] = {ler} =
{tcb} = }

The idsgrep command-line utility attempts to fol-
low Postel’s Law with respect to byte sequences that
are not valid UTF-8: “be conservative in what you
do, be liberal in what you accept from others.” [10]
Jesus of Nazareth stated a similar principle somewhat
earlier.” Accordingly, invalid UTF-8 on input is not
in general treated as a fatal error. Handling of in-
valid UTF-8 represents a delicate balance of security
issues: if invalid UTF-8 is treated as completely fa-
tal, that creates the possibility for denial of service
attacks, but if it is permitted to too great an extent,
it can create opportunities for things like buffer over-
flows. In general, the idsgrep utility will not itself
break when given bad UTF-8, nor will it make mat-
ters worse compared to a system that did not include
idsgrep, but idsgrep cannot be counted on to actively
protect some other piece of software that would oth-
erwise be vulnerable to bad UTF-8.

The parser will skip over (as if they did not ex-
ist at all) byte sequences that are not valid UTF-
8, including the forbidden bytes 0xC0, 0xC1, and
0xF5 through 0xFF; continuation bytes outside valid
multibyte sequences; “overlong” sequences (those
that would otherwise be valid, but encode a given

*“There is nothing from without a man, that entering into
him can defile him: but the things which come out of him,
those are they that defile the man.” (Mark 7:15, KJV)

T Genesis 4:9.

14

code point other than in the shortest possible way);
surrogates; and sequences that encode code points
outside the Unicode range. Depending on where they
occur within a multibyte sequence, some of these
things may result in the whole sequence being skipped
instead of just the bad bytes, with the parser making
its best guess as to what that means. Be aware that
some other software may treat some of these things
as valid.

When a code point outside the Unicode range, or a
surrogate, is specified using a backslash hexadecimal
escape, the parser will interpret it as if the substitute
character U+FFFD had been specified instead. All
UTF-8 sequences actually generated by the idsgrep
program are guaranteed to be valid UTF-8, barring
serious programming errors; and matching operations
including PCRE matches occur only on the parsed
internal representation which is valid UTF-8. Note
that PCRE, despite having a deprecated syntax for
sub-encoding byte matching, cannot be used to de-
tect invalid bytes that the idsgrep parser skipped; it
sees only what the parser validly parsed. However,
since in its default mode the idsgrep program will echo
through to the output the exact input byte sequence
that was parsed to create a tree, not the internal rep-
resentation, it is possible that non-UTF-8 input could
result in non-UTF-8 output. Several cooked output
modes, in which idsgrep generates its own UTF-8 from
the internal representation and provides guarantees
of valid UTF-8 or even valid ASCII output, are avail-
able but non-default.

Some byte sequences that are valid UTF-8 but
not valid Unicode, for instance the sequence that en-
codes a reversed byte order mark, may possibly go
undetected in the input and be allowed in the output,
even when cooked, by the current version of idsgrep.
It is intended that idsgrep should detect that kind of
thing where it is reasonable to do so, and future ver-
sions may do it better than this one does; but some
higher-level errors in Unicode usage, such as misuse
of combining characters or variation selectors, will
probably never fall within the scope of idsgrep.

Matching
The basic function of the idsgrep command-line util-
ity is to evaluate each item in the database against a
matching pattern. The matching patterns are sim-
ilar in spirit to the “regular expressions” common
throughout the Unix world; however, for theoreti-
cal and practical reasons standard regular expressions
would be unsuitable for the applications considered

by IDSgrep.

The main theoretical issue is that IDSes, whether
IDSgrep-style “extended” or Unicode-style tradi-
tional ones, belong to the class of context-free lan-
guages. They describe tree-like structures nested to
arbitrary depth, similar in nature to programming-
language expressions containing balanced parenthe-
ses although balanced parantheses as such are not ac-
tually part of EIDS syntax. The natural way to parse
these involves an abstract machine with a stack-like
memory that can assume an infinite number of dif-
ferent states. Regular expressions can only be used
to recognize the smaller, simpler class of regular lan-
guages, parsable by an abstract machine with a finite-
state memory. It is not possible to write a correct
regular expression that will match balanced paren-
theses. Some advanced software implementations of
so-called “regular expressions” (for instance, Perl’s)
contain special features that make them more pow-
erful than the standard theoretical model, so that
they are capable of recognizing some languages that
are non-regular, including balanced parentheses. It is
also possible to fake a stack with a finite depth limit
by writing a complicated regular expression, and that
may be good enough in some practical cases. Some
users may also settle for just doing a substring query
with grep and calling the result close enough. But
IDSgrep tries to do it in a way that is really right,
and that is described precisely in this section.

We will define a function match(z,y) which takes
two EIDS trees as input and returns a Boolean value
of true or false. We call x the pattern or needle and
y the subject or haystack. The idsgrep command-line
utility generally takes z from its command line and
repeatedly evaluates this function for each EIDS it
reads from its input; it then writes out all the values
of y for which match(z,y) is true.

The match(z,y) function is defined as follows:

e If z and y both have heads, then match(z,y)
is true if and only if their heads are identical.
Nothing else is examined (in particular, not the
children). Then the two cases below do not ap-

ply.

If + and y do not both have heads, then
match(x,y) = match'(x,y), whose value gener-
ally depends on the functor and arity of z. The
match’ function has many special cases described
in the subsections below, expressing different
kinds of special matching operations. These op-
erations roughly correspond to the ASCII char-

15

acters with sugary implicit brackets in EIDS syn-
tax. They are shown with brackets for clarity in
the discussion below, but users would generally
type them without the brackets and depend on
the sugar in actual use.

If none of the subsections below applies, then
match'(z,y) is true if and only if » and y
have identical functors, identical arities, and
match(x;,y;) is true recursively for all their cor-
responding children z;,7;. Note that match’ re-
curses to match, not itself, so there is a chance
for head matching on the children even if it was
not relevant to the parent nodes.

Match anything The value of match’((?),y) is al-
ways true. Thus, ? can be used as a wildcard in
idsgrep patterns to match an entire subtree regard-
less of its structure. Mnemonic: question mark is a
shell wildcard for matching a single character. The
verbose ASCII name for “(?)” is “(anything) ”

Match anywhere The value of match/(...z,y) is
true if and only if there exists any subtree of y (in-
cluding the entirety of y) for which match(x,y) is
true. In other words, this will look for an instance
of x anywhere inside y regardless of nesting level.
Mnemonic: three dots suggest omitting a variable-
length sequence, in this case the variable-length chain
of ancestors above . The verbose ASCII name for
“...7 is “Lanywhere.”

Match children in any order The value of
match'(.*.x,y) is true if and only if there exists a per-
mutation of the children of y such that match(z,y’) is
true of the resulting modified y’. For instance, *[albc
matches both [albc and [alch. This is obviously a no-
operation (matches simply if x matches y, as if the
asterisk were not applied) for trees of arity less than
two. Mnemonic: asterisk is a general wildcard, and
this is a general matching operation. The verbose
ASCII name for “.*.” is “,unord..”

NOT The value of match’(.!.x,y) is true if and
only if match(z,y) is false. It matches any tree not
matched by x alone. Mnemonic: prefix exclama-
tion point is logical NOT in many programming lan-
guages. The verbose ASCII name for “.!.” is “.not..”

AND The value of match'([&lzy,2) is true if and
only if match(z,z) A match(y,z). In other words, it

matches all trees that are matched by both x and y;
the set of strings matched by [&lzy is the intersec-
tion of the sets matched by z and by y. Mnemonic:
ampersand is logical or bitwise AND in many pro-
gramming languages. The verbose ASCII name for

“[&17 is “[and]”

OR The value of match/([11zy,2) is true if and
only if match(x, z) V match(y, z). In other words, it
matches all trees that are matched by at least one
of or y; the set of strings matched by [|]zy is the
union of the sets matched by x and by y. Mnemonic:
ASCII vertical bar is logical or bitwise OR in many
programming languages. The verbose ASCII name
for “[117 is “[or].”

Literal tree matching If x and y both have heads,
then the value of match'(.=.x,y) is true if and only
if those heads are identical. Otherwise, it is true if
and only if z and y have identical functors, identi-
cal arity, and match(z;,y;) is true for each of their
corresponding children.

The effect of this operation is to ignore any special
match’() semantics of z’s functor; the trees are com-
pared as if that functor were just an ordinary string,
regardless of whether it might normally be special.
Note that the full match() is still done on the children
with only the root taken literally; to do a completely
literal match of the entire trees it is necessary to in-
sert an additional copy of .=. above every node in the
matching pattern, or at least every node that would
otherwise have a special meaning for match’(), and
even then heads will continue to have their usual ef-
fect of overriding recursion.! Mnemonic: equals sign
suggests the literal equality that is being tested rather
than the more complicated comparisons that might
otherw1se be used. The verbose ASCII name for “.=.”

s “.equal..”

For instance, this feature could allow searching for
a unary tree whose functor actually is !, where just
specifying such a tree directly as the matching pat-
tern would instead (under the rule for “NOT” above)
search for trees that do not match the only child of
!. In the original application of searching kanji de-
composition databases this operation is unlikely to
be used because the special functors do not occur

It may be interesting to consider how one could write a pat-
tern to test absolute identity of trees, with each node matching
if and only if its head or lack thereof is identical to the desired
target as well as the functors and arities matching and the
same being true of all children.

16

anyway, but it seems important for potential appli-
cations of IDSgrep to more general tree-querying, be-
cause otherwise some reasonable things people might
want to look for could not be found at all.

Associative matching The value of match’(.0.x,y)
is calculated as follows. Create a new EIDS tree
z’, initially equal to x, which has the property that
its root may be of unlimited arity. Then for every
child of z’ whose functor and arity are identical to
the functor and arity of x, replace that child in z’
with its children, in order. Repeat that operation
until no more children of z’ have functor and arity
identical to the functor and arity of z. Compute 3’
from y by the same process. Then match’(.8.z,y) =
match(.=.2',y").

This matching operator is intended for the case
of three or more things combined using a binary op-
erator that has, or can be said to sometimes have,
an associative law. For instance, the kanji & could
be described by O over /) or by
“HLEHRL (L over HHUL). Unicode might encour-
age use of the ternary operator = for this particular

case instead, but that does not cover all reasonably-
occurring cases, and the default databases seldom if
ever use the Unicode ternary operators.

The difference between the representations is
sometimes useful information that the database
in the case of Tsukuri-

should retain; for instance,
mashou, |
would correspond to three very different stanzas of
MetaPost source code, and the user might want a
query that separates them. On the other hand, the
user might instead have a more general query along
the lines of “find three things stacked vertically with
/& at the bottom” and intend that that should match
both cases of binary decomposition. The at-sign
matching operation is meant for queries that don’t
care about the order of binary operators; without
it, matching will by default follow the tree structure
strictly.

Note that even with .8, IDSgrep will not con-
sider binary operators in any way interchangeable
with ternary ones; users must still use .|. to achieve
such an effect if desired. Although the at-sign is fully
defined for all arities, it is only intended for use with
binary trees. Note also that .8. and .*. behave
according to their definitions. Incautious attempts
to use them together will often fail to have the de-
sired effects, because the definitions do not include
special exceptions that some users might intuitively

expect for these two operators happening to occur
near each other. In a pattern like “*@[a][albcd,” .*.
will recognize .8. as the functor of a unary tree and
expand the single permutation of its one child, and so
that pattern will match the same things as if the as-
terisk had not been present, namely “[al[albcd” and
“[alblalcd]” but not, for instance, “[allaldcb.” In a
pattern like “@[alb*[alcd,” .8. will recognize .*. as
a different arity and functor from [al and choose not
to expand it in z’, with the result that that pattern
matches the same things as if the at-sign had not
been present, namely “[alblalcd” and “[alblaldc” but
not “[a][albcd” nor “[a][albdc.”

When considered as an operation on trees, what
.0, does is fundamentally the same thing as the alge-
braic operation that considers (a + b) + ¢ equivalent
to a4+ (b+ ¢), and for that reason it is called “asso-
ciative” matching. The mnemonic for at-sign is that
it is a fancy “a” for “associative.” The verbose ASCII
name for “.08.” is “.assoc..”

Regular expression matching If © and y both have
heads, then match'(./.z,y) is true if and only if the
head of z, considered as a regular expression, matches
the head of y. If x and y do not both have heads,
then match'(./.z,y) is true if and only if z and y
have the same arity, the functor of z considered as
a regular expression matches the functor of y, and
match(z;,y;) is true for each of their corresponding
children. This operation is basically the same as the
default matching operation, except that regular ex-
pression matching is used instead of strict equality
for testing the heads and functors. Mnemonic: slash
means regular expression matching in Perl. Verbose
ASCII name: “.regex..”

Regular expression matching for the purposes of
this operator is as defined by the Perl Compatible
Regular Expressions library, in whichever version was
linked with the idsgrep utility. Strings are passed into
PCRE as UTF-8, and are guaranteed (because the
EIDS parser decodes and re-encodes idsgrep’s input
for internal use) to be valid UTF-8 when PCRE sees
them regardless of user input; as such, PCRE is given
the option flags that make it read UTF-8 without
doing its own validity check. Use of the PCRE “\(”
syntax for matching individual octets within UTF-8
is strongly not recommended. All other PCRE op-
tions are left to the defaults chosen when PCRE was
compiled, even if those are silly. The character ta-
bles are PCRE’s “C locale” defaults, not generated
at runtime from the current locale. Things like case

sensitivity can be controlled within the pattern using
PCRE’s syntax for doing so. In the event that idsgrep
was compiled without the PCRE library (which is not
recommended, but is possible), or that PCRE was
compiled without UTF-8 support, then an attempt
to evaluate the slash operator will trigger a fatal er-
TOr.

A matching pattern given to PCRE will have al-
ready passed through the EIDS parser, which re-
moves one level of backslash escaping. The pattern
may also have been passed as a command-line argu-
ment to idsgrep by a shell, which may have undone
another level of backslash escaping. Thus, it may
be necessary to escape characters as many as three
times in order to match them literally with the slash
operator. Each of these levels may differ from the
others in terms of the escape sequences it supports
and their exact meanings. In many cases it doesn’t
really matter which level of processing evaluates the
escaping. For instance, “idsgrep "/(\t)",” (shell evalu-
ates “\t,” EIDS and PCRE see a literal tab); “idsgrep
"/(\t)")” (shell removes one backslash, EIDS eval-
uates “\t,” PCRE sees a literal tab); and “idsgrep
"/ (\\\1) "7 (shell removes two backslashes, EIDS re-
moves one, PCRE evaluates “\t”) will all match the
same things. If it matters, however, then caution is
necessary.

PCRE because of the limitations of its API ef-
fectively forbids zero bytes (U+0000) in its matching
patterns, whereas EIDS allows them to exist within
strings in general. The complexities of PCRE pattern
syntax make it impractical for idsgrep to automati-
cally escape zero bytes before passing the strings to
PCRE; there are too many different cases possible for
the context in which a zero byte might occur. Since
the idsgrep utility takes its matching patterns from
the Unix command line anyway, and Unix itself for-
bids literal zero bytes in command-line arguments,
the case of literal zero bytes in a matching pattern
can only occur when they are created deliberately by
escape sequences at the level of the EIDS parser; and
the simplest advice to users is “don’t do that!”

Python, which like EIDS allows strings to con-
tain zero bytes but has PCRE bindings and so faces
the same issue, briefly attempted to work around this
PCRE API limitation by auto-escaping. They even-
tually gave it up as too complicated and confusing.
The conseqeunce of PCRE’s API design is that if the
string given as a matching pattern contains a literal
zero byte then the regular expression to be matched
will consist of the prefix of the string up to but not

17

including the first zero byte; anything after that will
be ignored. Zero bytes are, nonetheless, permitted in
the matching subject, and PCRE can search for them,
but not by means of literal zero bytes in the pattern.
For instance, the PCRE syntax “\000” (or just “\0” if
the next character will not be an octal digit) matches
a zero byte. As discussed above, additional escaping
might be needed to ensure that PCRE, and not EIDS
nor the shell, interprets the backslash escape.

Cooked output
The default mode of operation for the idsgrep
command-line utility is that whenever a matching
tree is detected, the exact sequence of bytes that were
parsed to generate that tree (including no skipped
whitespace before it, and all skipped whitespace af-
ter it but before the next tree) will be copied through
to the output. This mode of operation is called
“raw.” Raw mode is easy to understand, efficient,
preserves distinctions like different kinds of brackets
in the input, and is as analogous as reasonably pos-
sible to the operation of grep. However, preserving
the exact input bytes may preserve invalid UTF-8,
valid but weird EIDS syntax, or non-ASCII charac-
ters users may find difficult to type or display, that
may have existed in the input. The “-¢” (“--cooking”)
command-line option provides a wide range of ways
for idsgrep to generate new EIDS syntax of its own,
guaranteed to be valid, from the internal represen-
tation generated by the parser. The cooked output
modes force the output into a well-behaved format
independent of what the input looked like. Input
canonicalization (such as the translation from “[lr]”

The “-¢” option can be given a (lowercase ASCII
Latin, unabbreviated) keyword as its argument, to
select a preset output mode. That is the only recom-
mended way to use this option. The available preset
modes are as follows:

raw Raw mode: write out the exact input byte se-
quence that was parsed to generate the matching
tree, even if it is not valid UTF-8. This is the
default.

rainc Raw with no canonicalization: raw mode out-
put, but without the canonicalization transfor-
mation during input parsing.

ascii ASCII-only: all non-ASCII characters and
ASCII control characters are replaced by escape
sequences or subjected to the reverse of the in-
put canonicalization transformation, to produce

18

a result that should pass through most limited-
character-set channels. Note that the plainest
ASCII space (U40020) is not escaped in this
mode when EIDS syntax does not require it to
be. This mode generally uses a lot of hexadeci-
mal escapes and, in a dictionary-lookup context,
may be useful for finding the hexadecimal code
point value of an unknown character.

cooked Generic cooked mode: render trees as reason-
ably clean and appealing Unicode text similar
but not necessarily identical to what appears in
the pregenerated dictionary files. This will es-
cape characters outside the Basic Multicharac-
ter Plane; characters in all Private Use Areas;
and any other characters that EIDS syntax re-
quires must be escaped; but no others. It will
choose an appropriate escaping method depend-
ing on the type of character. Generally, it will
use black lenticular brackets for top-level heads,
ASCII brackets elsewhere, and syntactic sugar
and syrup to avoid brackets where possible (ex-
cept for top-level heads).

indent Write trees on multiple lines with two-space
indentation to show their structure as clearly as
possible. One blank line (two newlines) between
trees. In other ways this is similar to “cooked.”

If not given a preset keyword, “-c” can be given

a string of ASCII decimal digits. The decimal-string
interface allows precise control of how output syntax
will be generated, but it is somewhat experimental,
very complicated, and may change incompatibly in
future versions of this software. Use of this feature
is not recommended. Nonetheless, the remainder of
this section will attempt to document it.

The format specifier may be up to twelve dig-
its long. If it is shorter than that, it is taken as a
prefix with unspecified digits copied from the default
specifier, which is “100000013250” and equivalent to the
“cooked” preset. The two raw presets are handled as
special cases; of the remaining cooked presets, “ascii”
is equivalent to “000000013551” and “indent” is equiva-
lent to “100000223250.”

The first digit specifies the type of brackets to
be used for the head of the root of the tree: 0 for
“<>? 1 for “ [1,” or 2 for “ () > The second digit
specifies the type of brackets for the head of any non-
root node, using the same code.

The third digit specifies the type of brackets for
nullary functors: 0 for “0,” 1 for “ O ,” or 2 for

“ () Similarly, the fourth digit specifies the brack-
ets for unary functors: 0 for “..,” 1 for “::,” or 2
for “ -« - 7; the fifth digit specifies the brackets for bi-
nary functors: 0 for “[1,” 1 for “ [1,” or 2 for “ [1 ”;
and the sixth digit specifies the brackets for ternary
functors: 0 for “4,” 1 for “ (3 ,” or 2 for “ 1) .

The seventh digit describes how to insert newlines
and indentation to pretty-print the tree structure. If
it is 0, that will not be done. If it is 8, trees will be
pretty-printed using one tab character per level; the
number eight is a mnemonic for the fact that people
generally expect those to be equivalent to eight spaces
each. Any other decimal digit specifies that many
spaces per level.

The eighth digit specifies the separator printed
between trees: 0 for a null byte (U+0000), 1 for a
newline, 2 for two newlines, or 3 for no separator at
all.

The ninth digit specifies the circumstances under
which the sugary and syrupy features of EIDS syntax
should be used. It is a sum of binary flags: add 4 to
use a syrupy semicolon when possible at the top level;
2 to use a syrupy semicolon when possible at other
levels; and 1 to use sugary implicit brackets wherever
possible.

The tenth digit specifies which characters should
be escaped. Literal backslashes, and (within a brack-
eted string) literal instances of the close-bracket char-
acter that would otherwise end the string, must al-
ways be escaped. When the tenth digit is 0, those
are the only characters that will be escaped. Other
values add escaping for the following categories of
characters, and do so cumulatively with each digit
also escaping everything that would be escaped by
all lesser digits.

1 Escape characters from the astral planes; that
is, characters with code points greater than

U+FFFF and thus outside the Basic Multilin-
gual Plane.

2 Escape characters from the BMP Private Use Ar-
eas, U+E000 to U4+F8FF. The other Private Use
Areas are already escaped at level 1 by virtue of
being outside the BMP.

3 Escape all non-ASCII characters (U+0080 and up)
except the core Unified Han range (U+4E00 to
U-+9FFF).

4 Escape the core Unified Han range.

5 Escape the ASCII control characters (U40000 to
U+001F).

19

6 Escape closing brackets at the start of bracketed
strings, which otherwise escape escaping because
of a special case in the syntax definition.

7 Escape all characters. Depending on the value of
the next digit, however, the ASCII Latin alpha-
bet still might not be escaped.

The eleventh digit specifies how to escape what-
ever characters were selected for escaping by the tenth
digit. The available values are as follows.

0 Use a single backslash followed by the literal char-
acter, only. The ASCII Latin alphabet can-
not be escaped in this way and under this op-
tion, or options 1 or 5 which fall through to this
case, will not be escaped at all. Since the literal
characters remain in the text, this option is not
suitable for sending output through any chan-
nel that is not clean for the full range of UTF-8
characters. However, unlike raw mode, this and
all other cooked modes do guarantee to produce
valid UTF-8, not arbitrary byte sequences.

1 Use a backslash-letter sequence for ASCII control
characters U+0001 to U+001B, and otherwise
follow option 0.

2 Use variable-length hexadecimal “\x{}” sequences
for all characters that are selected to escape.
This syntax can escape any character.

3 Use two-digit “\xH H” sequences wherever possi-
ble (that is, for ASCII and ISO-8859-1 char-
acters), four-digit “\XHHHH” sequences for
other characters on the Basic Multilingual Plane,
and variable-length hexadecimal sequences oth-
erwise.

4 Use four-digit “\XHHHH” sequences wherever
possible (that is, for all characters on the BMP),
and variable-length hexadecimal sequences oth-
erwise.

5 Attempt to choose the simplest type of escape
for each character depending on its value, just
like option 3 except with backslash-letter es-
capes where possible (U+0001 to U+001B) and
backslash-literal escapes for ASCII non-control
characters (U+0020 to U+007E excluding the
Latin alphabet). The ASCII Latin alphabet will
not be escaped at all under this option.

The twelfth digit specifies canonicalization pro-
cessing; that is, the translations on both input
and output between alphabetic functor aliases like
“(anything)” and their symbolic equivalents like “(?).
Note that in all cases the symbolic versions are the
matching operators; if you disable input canonical-
ization and enter a matching pattern of “(anything)”
it will be matched as an ordinary nullary functor
containing a string of eight ASCII letters, not as
the match-anything operator which is always named
“(?) The digit value is a sum of binary flags: add
4 to disable the default transformation of alphabetic
aliases to symbolic names on input; plus 2 to enable a
translation from alphabetic aliases to symbolic names
on output, which is generally only meaningful if 4 was
selected; plus 1 to enable a transformation from sym-
bolic names back to alphabetic aliases on output.

20

Bibliography

[1]
2]

3]

[10]

[11]

CHISE project. Online http://www.chise.org/.

GlyphWiki. Online http://en. glyphwiki.org/wiki/
G6lyphWiki:MainPage.

Ulrich Apel. KanjiVG. Online http://kanjivg.
tagaini.net/.

Jim Breen. The EDICT dictionary file. Online
http://www. csse.monash. edu. au/~jwb/edict. html.

Jim Breen. WWWJDIC: Online Japanese Dic-
tionary Service. Online http://www.csse.monash.
edu. au/~jwb/cgi-bin/wwwjdic. cgi.

Alexandre Duret-Lutz. Using GNU Auto-
tools. Online http://www. [rde.epita.fr/~adl/dl/
autotools.pdf.

Free Software Foundation. GNU Grep 2.9. On-
line http://www.gnu.org/software/grep/manual/grep.
html.

Jason Katz-Brown. The Kiten Handbook, revi-
sion 1.2. Online http://docs.kde.org/development/
en/kdeedu/kiten/index. html.

SFMAIE [Morioka Tomohiko]. UIF-2000 7m12
7 | [The UTF-2000 Project]. 5 L 4&## [Kanji
and Information], (2):4-6, March 2001. In
Japanese. Online http://www.kanji.zinbun.kyoto-u.
ac.jp/publications/kanji-and-info-2.pdf.

Jon Postel. Transmission Control Protocol. RFC
793 (Standard), September 1981. Ounline http:
/fww. ietf.org/rfc/rfcl93. txt.

Julian Seward and Nicholas Nethercote. Us-
ing Valgrind to detect undefined value errors
with bit-precision. In USENIX Annual Tech-
nical Conference, General Track, pages 17-30.
USENIX, 2005.

Matthew Skala.
ily and IDSgrep.
sourceforge. jp/.

Tsukurimashou Font Fam-
Online http://tsukurimashou.

21

[13]

[14]

[15]

Matthew Skala. Tsukurimashou Github
repository. Online http://github. com/mskala/
Tsukurimashou.

Unicode Consortium. Ideographic description
characters. In The Unicode Standard, Version
6.0.0, section 12.2. The Unicode Consortium,
Mountain View, USA, 2011. Online http://www.
unicode.org/versions/Unicode6.0.0/ch12.pdf.

Ben Wing et al. XEmacs: The next generation
of Emacs. Online http://www.xemacs.org/.

